

Multimedia Introduction
to Programming
Using Java

ProgramLive CD-ROM included

David Gries
Department of Computer Science
Cornell University
Ithaca, NY 14853-7501
USA
gries@cs.cornell.edu

Paul Gries
Department of Computer Science
University of Toronto
Toronto, Ontario M5S 3G4
Canada
pgries@cs.toronto.edu

CD-ROM: Courtesy DataDescription.
DataDescription, Inc.
840 Hanshaw Rd., Suite 9
Ithaca, NY 14850

ISBN 0-387-22681-8 Printed on acid-free paper.

© 2005 David Gries and Paul Gries.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of
the publisher (Springer Science+Business Media Inc., 233 Spring Street, New York, NY 10013, USA), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or here-
after developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identi-
fied as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

Printed in the United States of America. (MP)

9 8 7 6 5 4 3 2 1 SPIN 11019312

springeronline.com

To the women in our lives:
Anne

Elaine
Petra
Susan
Sage

This text is an introduction to programming using the Java programming
language. It differs from most other such texts in several ways.

The livetext ProgramLive
Accompanying the text is a CD, which is itself a complete multimedia text

on programming in Java. This CD acts like a book: you can turn the pages, look
at the table of contents, the glossary, the index, and so forth. And because it is
computerized, you can get to a particular page from the table of contents or the
index with a click of your mouse.

Each page of the CD contains recorded lectures with synchronized anima-
tion. These lectures teach, using narration and animation, in a way that is impos-
sible in a paper text. For example, students can watch execution of a method call,
seeing the frame for the call being drawn and later erased. They can see the step
by step development of a method body using step-wise refinement. They can see
what abstraction means in a program, as they read a loop body in terms of an
English statement and an increment of a counter, then have everything disappear
from view except the English statement, and see its implementation.

An instructor can show some of these animated lectures in class —you
would be amazed at how much energy that saves. Moreover, these lectures are
repeatable: students can watch them at home.

The CD also contains all the programs that are used in this text, as well as
material for over 35 guided closed-lab sessions.

Thus, this multimedia CD is a significant step forward in the kinds of mate-
rials that we give our students. It has been used successfully in a self-paced (no-
lecture) and in a distance-learning course.

In this paper text, the lefthand margin contains many references to the CD
(like the one on the left of this paragraph), emphasizing the places where the stu-
dent might learn better by listening to (and watching) an animated lecture.

Using DrJava or BlueJ
This text makes a second departure from the norm. Typically in a course,

students have several assignments that call for writing and testing Java programs.
But students do not practice much outside of those assignments, so they do not
become fluent in Java by the end of the semester. The emergence of DrJava, a
new IDE from Rice University, can change this mode of operation. DrJava con-
tains an “Interactions pane”, where one can type any expression or statement and
have it evaluated or executed immediately, without having to have a full Java
program. There is no need for a class and no need for a method main with a
String[] parameter. There is no more need for magic! Beginning students can
use the Interactions pane to practice; until they write a full class, there is no need
to compile. For example, after a lecture on int and double expressions, they can

Activity
1-1.2

Preface

viii Preface

practice with such expressions and gain a real understanding of integer division,
the remainder operation, and casting. Also, after a first lecture on creating an
object and referencing its components, they can practice doing just that, without
having to have a full program. Self-help exercises after many sections of this text
are designed to get the students to practice with Java more frequently. Studying
should involve doing as well as reading.

We have found DrJava to be so useful that we use it almost every day in lec-
ture (with a projector that displays the computer monitor on a screen). It has rad-
ically changed our lecture style. We can use it to demonstrate the points men-
tioned above and much more, such as step-wise refinement.

This preface is not meant to convince you that DrJava is the One True Way.
It is effective, but other IDEs may provide a similar experience, although, so far
we have found them to be less polished and less intuitive. The excellent BlueJ,
for example, has an expression evaluator, but at the time of this writing it does
not allow variables to be declared and used in later expressions.

DrJava is free. Appendix I explains how to download and use it. Even if you
prefer that your students use a more conventional IDE for writing regular pro-
grams, DrJava provides a wonderful practice environment, and something like it
should be used for the first month of the term.

Objects as manilla folders in filing cabinets
This text differs also in its introduction to classes and objects. A class is

viewed as a drawer of a filing cabinet filled with manilla folders, which repre-
sent the instances or objects of the class. Each manilla folder has a distinct name
on its tab, and it is this name that is stored in variables of the class-type. This
approach allows us to dispense with the terms “reference” and “pointer” at the
beginning (we introduce them later), for which students have no concrete analo-
gy, and makes the introduction of classes, objects, and variables much easier.

Some reviewers have asked us to use UML diagrams instead of manilla
folders. We cannot do that because UML diagrams and manilla folders are used
for entirely different purposes. UML diagrams are used when designing or ana-
lyzing a program, for example, to show relations between classes. Manilla fold-
ers are used when executing statements by hand. For example, evaluating a new-
expression requires drawing a new manilla folder that represents the new object.
The manilla folder has a “tab”, which contains the name of (or reference to) the
object. No such animal exists in the UML world.

This file-cabinet–manilla-folder analogy, together with DrJava, allows us to
comfortably introduce the creation and manipulation of objects as early as the
second lecture (after a lecture on expressions), and students can begin practicing
immediately, creating objects themselves on the computer and interacting with
them. This occurs before they see a class definition!

Also, with this analogy, we are able to discuss a general inside-out rule that
is used in some manner in almost all programming languages: a construct (such
as a method body) can reference variables and methods defined not only in that

construct but in any surrounding construct (such as a class definition). This
inside-out rule makes it easy to discuss issues of scope in various contexts.

Finally, the analogy extends easily to the discussion of nested classes (both
static classes and inner classes), and we are able to show how a “flattened view”
of an inner class is similar to how Java implements nested classes. We have not
seen a text that does this so easily. Of course, the material on nested classes is
beyond the first course, but the fact that we can (and do) treat this material is
some indication of the appropriateness of this analogy.

The pace of the text
Some reviewers of this text felt that the first chapter has a great deal of mate-

rial and is fast-paced. Yes, there is a lot of material, but our experience is that stu-
dents can handle it. We believe this is due to a combination of factors:

1. The use of DrJava in the classroom to demo concepts and Java features.
2. The self-review exercises in almost each section of the first chapter (and

often in later chapters). Practice is needed to gain ease and fluency.
3. Weekly mandatory closed labs, where the students are guided in using

DrJava. (The CD contains over 35 guided labs.)
4. The file-drawer–manilla-folder analogy, which provides the students

with a concrete idea of what an object is.

An execution model
The text has another difference from most texts. We introduce a “model of

memory”, which includes not only drawing objects but also executing method
calls, including pushing a frame on a call stack and popping the frame when the
method call is finished. We have several assignments in which the students have
to execute method calls by hand, and they may be asked to do the same on tests.
Without such a model of memory, the whole idea of a method remains vague, and
nested method calls such as f(g()) are, to some students, bewildering. With the
model of memory, students have a more concrete understanding, and we have
found that a later explanation of how recursive calls work is trivial.

Knowing that some instructors will not want to introduce it, we have struc-
tured the text so that the sections on the model can be skipped.

Prerequisite structure of this text
Different instructors have different ideas on when to teach what in introduc-

tory programming (using Java). Some teach procedural programming first; oth-
ers do object-oriented programming first. Some teach for-loops early; others wait
until classes and subclasses are finished. Some teach class Vector early so that
students can write programs that deal with collections of objects; others never
mention Vector. Some teach file I/O; others do not.

This textbook is organized to allow for such variation. Chapters 1 and 2 give
basic introductions to expressions, types, assignment, if-statements and for-
loops, methods and method calls, and classes and subclasses (not in the order list-

Preface ix

x Preface

ed) and are prerequisites for the rest of the text. The following prerequisite chart
(for part of the text) shows the order in which material can be taught after (or at
the same time as) the first two chapters.

The short chapter on packages is needed to explain the import statement; we
do not expect students to write their own packages.

Testing should be integrated throughout the course. However, for organiza-
tional purposes, it is best to have a separate chapter on testing and debugging,
which the instructor and student can refer to from time to time. It is up to the
instructor just how and when to cover this topic.

The three sections on the “execution model” are separate enough so that they
can be skipped, should an instructor choose to do so.

The prerequisite diagram shown above gives the overall, gross structure. But
different teachers emphasize different topics within that structure. The following
diagram shows when various topics can be introduced.

Much of the material in Chaps. 6 (primitive types) and 13 (programming
style) appears in different places throughout the text; these chapters provide more

5.1. Wrapper classes

16.1. Java applications

5.3. Class Vector

5.2. String/StringBuffer

5.7–5.10. Input/output

5.6. Random numbers

6. Reference on primitive types13. Reference on style

1. Introduction

10.1. Output of Exceptions

16.3–16.4. Java applets
2.3.8. Loops

1. Introduction

2.1.–2.6. Methods 2.7. Execution model

3.1.–3.4. Classes 3.5. Execution model

4.1.–4.5. Subclasses 4.6. Execution model

4.7. Abstract classes

7. Loops

8.1–8.5. Arrays

9. Multi-dim. arrays 8-6. Parallel arrays

11. Packages

14. Testing

Preface xi

thorough explanations and serve as references. They do not have exercises.
We provide several alternatives for I/O. Section 5.7 discusses a class,

JLiveRead, that we have written to provide methods for reading integers, strings,
etc, from the keyboard (i.e. Java console). We no longer use this class, preferring
in the beginning to use either the DrJava interactions pane or our GUI JLive-
Window for input.

JLiveWindow, discussed in Sec. 5.8, provides a number of int, double, and
String fields and a “ready button”. When the button is pressed, a certain method
is called, and this method can be changed to do whatever you want. This GUI is
great for providing simple input and for testing methods.

If you prefer to show your students the basics of reading from the keyboard
and read/writing files, including appending to a file, using the classes of package
java.io, use Secs. 5.9 and 5.10.

Various issues of style take several paragraphs or even a page to discuss. To
place these discussions in the text would dilute the material. For example, plac-
ing a discussion of the various ways to indent an if-statement in the section that
introduces the if-statement would distract from the topic at hand. We get around
this problem by placing all discussions of style in Chap. 13 and placing refer-
ences to the pertinent style material in the left margin, as in this paragraph.

Section 10.1 can be read at any time to help students understand the output
resulting from thrown Exceptions and Errors.

Because we use DrJava or BlueJ, there is no need to introduce method main
until well into the semester. Section 16.1 summarizes what one has to know
about method main, and an instructor can choose to introduce it whenever they
want. Similarly, sections in Chap. 16 on applets can be studied at any time.

The other topics in the diagram are discussed in terms of particular Java
classes, and they can be studied after Chap. 1. We have suggested studying class
Vector and I/O after a brief introduction to loops because using these classes in
an interesting way usually requires loops.

Several topics covered in this text are not usually included in a first course:
recursion, interfaces, nested classes (including anonymous classes), and the GUI
packages in Java. We show in the diagram below when these topics can be
taught. (The section on interfaces requires loops because one of the major uses
of interfaces is in classes Enumeration and Iterator.)

1. Introduction 2.1.–2.6. Methods

12.4. Nested classes

3.1.–3.4. Classes

4.1.–4.5. Subclasses

4.7. Abstract classes

7. Loops

12.1. Interfaces

15. Recursion

17. GUIs

Style Note
Chap. 13

Introduction to
style issues

xii Preface

Acknowledgements

The computer science departments at Cornell, Toronto, and UGA have been
extremely supportive of our work. We thank the introductory programming
classes —and their instructor— who have used drafts of this book and the CD
over the years.

The people at Data Description are great! Matt Clark wrote the software to
produce the first livetext, ActivStats. As we wrote the CD ProgramLive, he
responded quickly to our calls for changes and additions to fit our needs. John
Sammis, the business manager, has been our constant companion and “encour-
ager” for several years. Paul Vellemen, the author of ActivStats, was instrumen-
tal in getting us started on ProgramLive. And a cadre of other people at Data
Description have been supporting the project in many ways, like producing the
icons for each activity, cleaning audio files, synching animations to audios, and
translating the CD from its Macintosh author-base to the Windows environment.
The amount of work to be done to produce a livetext continues to amaze us.

We want to thank reviewers of the text, who helped tremendously.
Ann Kostant, Wayne Wheeler, and the rest of our Springer-Verlag contacts-

deserve special mention for their great advice and for getting this book published
in near-record time. Laurie Buck did an excellent job of as copy editor for this
book, again in record time.

Last —and certainly not least— we thank our wives, Elaine Gries and Petra
Hall, for all they have put up with over the years. They has been supportive in
countless way and patient in many more during the long, drawn-out months and
years of this project.

David Gries
Paul Gries

PART I BASIC OO PROGRAMMING 1

Chapter 0. Computers and programming 3

0.1 Computer organization 4
0.2 Computer software 8

Chapter 1. OO introduction to Java 15

1.1. Types and expressions 16
1.1.1 Type int 17
1.1.2 Type double 18
1.1.3 Casting between int and double 19
1.1.4 Type boolean and arithmetic relations 20
1.1.5 Type String 22
1.1.6 Precedences of operators 23
1.1.7 Function calls 23
1.1.8 Self-review exercises 24

1.2 Variables, declarations, assignments 26
1.2.1 Self-review exercises 29

1.3 Classes and objects 30
1.3.1 The class as a file drawer of folders 30
1.3.2 Packages and the import statement 31
1.3.3 Objects of class JFrame 33
1.3.4 Objects of class String 38
1.3.5 Key concepts 39
1.3.6 Self-review exercises 40

1.4 Customizing a class to suit our needs 41
1.4.1 A subclass definition 41
1.4.2 Remembering data: adding variables 45
1.4.3 Self-review exercises 46

1.5 Static components 47
1.6 Graphics in a JFrame 48
1.7 Programming style and habits 50
Exercises for Chapter 1 51

Chapter 2. Methods 55

2.1 Java methods are recipes 55
2.2 The black-box view of a method 57

2.2.1 The anatomy of a method header 57
2.2.2 The procedure call 59
2.2.3 The function call 62
2.2.4 Self-review exercises for calls 62

2.3 Method bodies 64

2.3.1 The procedure body 64
2.3.2 Executing a procedure call 66
2.3.3 Conditional statements and blocks 68
2.3.4 Self-review exercises for ifs 71
2.3.5 The return statement 74
2.3.6 The function body 75
2.3.7 Local variables 76
2.3.8 Processing a range of integers 78
2.3.9 Self-review exercises for for-loops 81

2.4 Static versus non-static methods 82
2.5 Stepwise refinement 83

2.5.1 Stepwise refinement: making coffee 84
2.5.2 A summary of stepwise refinement 85
2.5.3 Top-down development of a Java task 86

2.6 Assertions in programs 90
2.6.1 Relations about variables and values 90
2.6.2 Assertions 92

2.7 A model of execution 93
2.7.1 Frames for method calls 93
2.7.2 The steps in executing a method call 97

2.8 Key concepts 97
2.9 Self-review exercises 99
Exercises for Chapter 2 100
3.1 Class definitions 105

Chapter 3. Classes 105
3.1.1 The principal of information hiding 108
3.1.2 The inside-out rule 109
3.1.3 Declaration of constructors 110
3.1.4 Function toString 112
3.1.5 Self-review exercises 114

3.2 Using classes 115
3.2.1 The class as a type 115
3.2.2 The new-expression 116
3.2.3 Referencing components 118
3.2.4 Equality testing and aliasing 118
3.2.5 Making fields public 119
3.2.6 Self-review exercises 120

3.3 Static components 122
3.3.1 Static variables 122
3.3.2 Static methods 124

3.4 Object-oriented design 124

Contents

xiv Contents

3.4.1 The basic idea of OO design 124
3.4.2 An example of OO design 126

3.5 The model of execution 134
3.6 Key concepts 137
Exercises for Chapter 3 138

Chapter 4. Subclasses 141

4.1 The subclass definition 142
4.1.1 Inheriting and overriding 143
4.1.2 The class invariant 146
4.1.3 Constructors in a subclass 147

4.2 Casting about, or about casting 148
4.2.1 Apparent and real classes 148
4.2.2 Explicit widening and narrowing 151
4.2.3 Operator instanceof 152

4.3 The class hierarchy 153
4.3.1 Class Object 154
4.3.2 Boolean function equals 154

4.4 Access modifiers 155
4.5 Object-oriented design 156

4.5.1 The is-a relation 156
4.5.2 Example of object-oriented design 158

4.6 The final model of execution 162
4.7 Abstract classes 163
4.8 Key concepts 165
4.9 Self-review exercises 166
Exercises for Chapter 4 167

Chapter 5. Some useful classes 171

5.1 The wrapper classes 172
5.1.1 Wrapper class Integer 172
5.1.2 Other wrapper classes 174

5.2 Classes String and StringBuffer 175
5.2.1 String literals 175
5.2.2 The basics of String manipulation 176
5.2.3 Changing a name format 179
5.2.4 Extracting an integer from a string 180
5.2.5 Class StringBuffer 181
5.2.6 Exercises on strings 183

5.3 Class Vector 184
5.3.1 Creating and adding to a Vector 185
5.3.2 Changing and retrieving elements 186
5.3.3 Other methods in class Vector 188
5.3.4 Exercises on class Vector 188

5.4 Class Date 189
5.5 Formatting numbers 190

5.5.1 Class DecimalFormat 191
5.5.2 Formatting in locales 192

5.6 Random numbers 193
5.6.1 Method Math.random 194
5.6.2 Class Random 194
5.6.3 Exercises with random numbers 195

5.7 Class JLiveRead for keyboard input 196
5.8 GUI JLiveWindow 199
5.9 Reading the keyboard and a file 201

5.9.1 Reading the keyboard 202
5.9.2 Reading a file 205

5.10 Writing and appending to a file 207
5.10.1 Exercises with files 208

5.11 Universal resource locators 209
5.11.1 URLs 209
5.11.2 Class URL 212
5.11.3 Reading the file given by a URL 212

Chapter 6. Reference on primitive types 215

6.1 Type int 216
6.2 Types byte, short, and long 218

6.2.1 Types byte and short 218
6.2.2 Type long 219

6.3 Casting among integral types 220
6.4 Floating-point types double and float 221

6.4.1 Type double 221
6.4.2 Type float 224

6.5 Type char 224
6.6 Casting among primitive types 225
6.7 Type boolean 226

PART II OTHER JAVA CONSTRUCTS 231

Chapter 7. Loops 233

7.1 The while-loop 233
7.1.1 Syntax and semantics of while-loops 233
7.1.2 Tracing execution of a loop 234
7.1.3 Self-review exercises 235

7.2 Understanding and developing loops 236
7.2.1 Four loopy questions 237
7.2.2 Developing a second loop 240
7.2.3 A slightly different problem 241
7.2.4 Self-review exercises 242

7.3 Examples of while-loops 244
7.3.1 The roach explosion 244
7.3.2 Exponentiation 245
7.3.3 The spiral 248

7.4 Loop patterns 248
7.4.1 Schema to process natural numbers 248

Contents xv

7.4.2 A loop to count the w's 249
7.4.3 Testing primality 251
7.4.4 A schema for reading 252
7.4.5 Self-review exercises 253

7.5 The for-loop 253
7.5.1 The for-loop as an abbreviation 253
7.5.2 Syntax and semantics of for-loops 254
7.5.3 Developing a for-loop 255
7.5.4 A for-loop schema 256
7.5.5 Self-review exercises 257

7.6 Making progress and stopping 257
7.6.1 Why use condition i != n? 257
7.6.2 A case where i < n is needed 258
7.6.3 Off-by-one errors 260
7.6.4 The bound function of a loop 260

7.7 Miscellaneous points about loops 261
7.7.1 There are no nested loops 261
7.7.2 How not to program 263

7.8 Key concepts 265
Exercises for Chapter 7 265

Chapter 8. Arrays 271

8.1 Arrays of subscripted variables 271
8.1.1 Declarations of arrays 272
8.1.2 Creating an array 272
8.1.3 Referencing the length of an array 273
8.1.4 Array initializers 273
8.1.5 Consequences of arrays as objects 274
8.1.6 Passing an array as an argument 275
8.1.7 Initializing class-type arrays 276

8.2 Talking about array segments 276
8.2.1 Range notation: h..k 276
8.2.2 Horizontal descriptions of arrays. 277
8.2.3 Placing information in a segment 278

8.3 Processing array segments 279
8.3.1 Printing an array segment 279
8.3.2 A schema to process arrays 280
8.3.3 A schema to process in reverse 280
8.3.4 Example: using a schema 281
8.3.5 Checking equality of arrays 283
8.3.6 Returning an array 284

8.4 Storing tables of values in arrays 285
8.4.1 Changing the size of an array 287

8.5 Basic array algorithms 288
8.5.1 Linear search 288
8.5.2 Finding the minimum value 289
8.5.3 Binary search 291
8.5.4 Selection sort 293

8.6 Parallel vs. class-type arrays 295
8.7 Key concepts 296
8.8 Self review exercises 297
Exercises for Chapter 8 297

Chapter 9. Multi-dimensional arrays 301

9.1 Rectangular arrays 301
9.2 Programs that use rectangular arrays 304

9.2.1 Printing a two-dimensional array 304
9.2.2 A two-dimensional array schema 305
9.2.3 An interesting table 306
9.2.4 Row-major search 306
9.2.5 Saddleback search 307

9.3 Arrays of arrays 307
9.3.1 Ragged arrays 308
9.3.2 Pascal’s triangle 309

9.4 Key concepts 311
Exercises for Chapter 9 311

Chapter 10. Exception handling 313

10.1 Output of thrown Exceptions 313
10.2 The throw-statement 316
10.3 The throwable object 317
10.4 Catching a thrown Exception 319

10.4.1 The try-statement 319
10.4.3 Propagation of a thrown exception 321

10.5 Checked Exceptions 323
10.6 Hints on using exceptions 325
10.7 Key concepts 326
10.8 Self-review exercises 327
Exercises for Chapter 10 327

Chapter 11. Packages 329

11.1 Using packages 329
11.2 Package names 331
11.3 The packages that come with Java 333
11.4 Key concepts 334

Chapter 12. Interface and nested class 335

12.1 Interfaces 335
12.1.1 The interface as a type 337
12.1.2 Implementing several interfaces 339
12.1.3 Extending an interface 340

12.2 Comparable and Comparator 341
12.3 Enumeration and Iterator 344
12.4 Nested classes 348

12.4.1 Static nested classes 348

xvi Contents

12.4.2 Inner classes 350
12.4.3 The flattened view of inner classes 356
12.4.4 Local inner classes 358
12.4.5 Anonymous classes 360

12.5 Key concepts 361
Exercises for Chapter 12 362

PART III ASPECTS OF PROGRAMMING 365

Chapter 13. Programming style 367

13.1 Naming conventions 370
13.1.1 Conventions for variable names 370
13.1.2 Conventions for naming methods 372
13.1.3 Conventions for class names 372

13.2 Conventions for indentation 373
13.2.1 Indenting if-statements 373
13.2.2 Indenting assertions 374
13.2.3 Indenting loops 374
13.2.4 Indenting the body of a method 375
13.2.5 Indenting components of a class 375

13.3 Guidelines for writing methods 376
13.3.1 The specification as a contract 376
13.3.2 Keeping body and spec consistent 378
13.3.3 Using statement-comments 379

13.4 Describing variables 381

Chapter 14. Testing and debugging 385

14.1 An introduction to testing 386
14.1.1 Five maxims for creating test cases 387
14.1.2 Example of creating test cases 388
14.1.3 A test driver 389
14.1.4 Testing using JUnit 390
14.1.5 Testing a class 391

14.2 Approaches to creating test cases 392
14.3 Approaches to testing 394
14.4 The Java assert statement 395
14.5 Debugging 398
14.6 Key concepts 400

Chapter 15. Recursion 403

15.1 The recursive pattern 403
15.1.1 A simple recursive definition 403
15.1.2 A recursive procedure 404
15.1.3 A recursive function 406
15.1.4 A function for a math definition 407
15.1.5 The recursive pattern 408
15.1.6 Self-review exercises 409

15.2 Some interesting recursive methods 411

15.2.1 Tiling Elaine’s kitchen 411
15.2.2 Computing xy 412
15.2.3 Computing Fibonacci numbers 413
15.2.4 Merge sort 414

15.3 Execution of recursive calls 415
15.3.1 Tail-recursive procedure calls 416
15.3.2 Tail-recursive function calls 417
15.3.3 Removing tail-recursion: procedures 418
15.3.4 Removing tail-recursion: functions 419

15.4 Quicksort 420
15.4.1 Algorithm partition 421
15.4.2 Basic quicksort 421
15.4.3 Quicksort at its best 422
15.4.4 Quicksort at its worst 424
15.4.5 Quicksort’s time/space problems 425
15.4.6 Removing quicksort’s tail recursion 427

15.5 Object recursion 427
15.6 Key concepts 428
Exercises for Chapter 15 431

Chapter 16. Applications and applets 435

16.1 Java applications 435
16.2 Stand-alone applications 436
16.3 Java applets 438
16.4 HTML and the web 441
16.5 Key concepts 444

Chapter 17. GUIs 445

17.1 JFrames 446
17.1.1 The basics of JFrames 446
17.1.2 Placing components in a JFrame 448

17.2 Components 449
17.2.1 JButtons 450
17.2.2 JLabels, JTextFields, JTextAreas 450
17.2.3 Other components 454
17.2.4 JPanels as graphics panels 455
17.2.5 Components versus containers 456
17.2.6 Lightweight versus heavyweight 457

17.3 Containers and layout managers 458
17.3.1 JPanels and FlowLayout managers 459
17.3.2 Boxes and BoxLayout managers 460
17.3.3 Using different layout managers 462

17.4 Listening to a GUI 462
17.4.1 Button events 463
17.4.2 Mouse events: class Square 466
17.4.3 Mouse events: class MouseDemo 468
17.4.4 Listening to other components 469
17.4.4 Using several listeners 470

Contents xvii

17.5 Dialog windows 470
17.5.1 Class JOptionPane 471
17.5.2 Class JDialog 474

17.6 Key concepts 474
Exercises for Chapter 17 475

APPENDICES 479

Appendix I. Dealing with Java 481

I.1 Java SDK 482
I.2 DrJava 482

I.2.1 Using the Interactions Pane 483
I.2.2 Using the Definitions Pane 483
I.2.3 Javadoc 486
I.2.4 Using JUnit in DrJava 486

I.3 Using a command-line window 489
I.4 Making a stand-alone application 490
I.5 Java error messages 491

Appendix II. Java API and Javadoc 493

II.1 The Java API Specifications 493
II.2 Javadoc 496

Appendix III. Number systems and logs 499

III.1 Number systems 499
III.2 Base-2 logarithms 504

Appendix IV. Correctness of programs 505

IV.1 Hoare triples 506
IV.2 Two inference rules 508
IV.3 Axiomatic definition of statements 509

IV.3.1 Empty statement 510
IV.3.2 Assignment statement 510
IV.3.3 Multiple assignment statement 511
IV.3.4 Sequencing 511
IV.3.5 Conditional statements 513
IV.3.6 The while-loop 513

IV.4 Developing simple programs 514
IV.5 Developing loops 517

IV.5.1 Developing the invariant 517
IV.5.2 Developing the repetend 521
IV.6 A neat example: fusc 522

Index 525

Part I introduces the basics of programming in an object-oriented language.
Chapter 0 provides an introduction to computers and programming.
Chapter 1 introduces expressions and how Java evaluates them. The reader

already knows a lot about expressions and has to see only how one writes expres-
sions in Java and and how they are evaluated by Java. Practice with expressions
is the key to a quick understanding and obtaining fluency with Java expressions.

Thereafter, the notions of a variable, the declaration of a variable, and an
assignment to a variable are explained. Again, practice with the concepts is key
to a quick understanding

Chapter 1 also explains object-oriented concepts —what an object is and
how a class definition is a template for a collection of objects with the same for-
mat. The first class definition one sees extends, or customizes, a class to fit one’s
needs. Our experience is that this is the easiest way to get across the concepts.

Finally, Chap. 1 introduces the notion of a method as a recipe for getting
something done (a procedure) or calculating a value (a function).

Chapter 2 is a thorough, in-depth discussion of methods. It includes a dis-
cussion of the if-statement and a short introduction to the for-loop. Also included
is a discussion of stepwise refinement, an idealized notion of how one goes about
developing a method.

Chapter 3 then covers classes thoroughly, repeating some of the material of
section 1 and going into more detail, while Chap. 4 covers subclasses.

Chapter 5 looks at some of the classes in the Java API (Application
Programmer Interface) —like the wrapper classes, classes String and Vector,
classes for formatting numbers and for generating random numbers, and classes
for doing input/output (I/O). These are written so that the instructor can introduce
them at almost any point, once Chap. 1 has been covered.

Chapter 6 provides a reference for the primitive types of Java.

Part I

Basic Object-Oriented Programming

Chapter 0

Computers and Programming

OBJECTIVES

INTRODUCTION

Computers do not speak English. Instead, they have a rather peculiar communi-
cation system involving electric signals carried through silicon, etched using
acids and electric current. Despite this rather alien and complex nature, humans
still manage to create incredibly useful virtual tools using computers. (A hammer
is real. A spreadsheet is virtual. You will not be able to pick up and hold anything
that you learn how to build during your introductory programming course or, in
fact, during your entire career as a programmer.)

A program is a set of instructions for a computer to follow. Over half a cen-
tury ago, the first computer programs were created rather tediously, by plugging
wires into sockets in intricate patterns. Flashing lights were used to indicate
results. In the first programming courses, students would write a program on
“paper tape” or “punch cards” and then submit the tape or deck of cards for pro-
cessing. A few hours later, or even more, they would see the results of running the
program and get their tape or cards back. Today, programs are created using a
keyboard, or even automatically generated using drawing tools, and executed
immediately. In a few seconds, you see the results. What a difference!

To understand how to build computers, engineering students go back to
basics and think about the patterns of the wires. You do not have to go back that
far, but, as beginning programmers, you will benefit from an understanding of
hardware organization and of how programs and other files are stored and man-
aged. Therefore, in the first section of this chapter, we discuss this topic. The rest

• Look at the organization of computers.
• Discuss computer software and compiling and executing programs.
• Introduce the programming language Java.

4 Chapter 0 Computers and programming

of this chapter outlines what a program is and how instructions in a Java program
are executed by the computer.

The livetext ProgramLive
This text is accompanied by a CD, which is totally different from CDs that

accompany other texts. This CD, our original livetext ProgramLive, has on it a
multi-media version of this text. It has “lesson pages”, which are like the pages
of a book. But each page contains several recorded mini-lectures with synchro-
nized animation —there are over 250 such lectures. You can learn from these lec-
tures, or activities as they are called, far better than you can from the static paper
that you are now reading because the CD uses time, color, animation, and a
recorded voice to enhance the presentation. The CD also contains a hypertext
index and a glossary that is unmatched in any paper programming text, includ-
ing this one.

In the left margin of the pages of this paper text, occasionally you will see
an oval with an activity number in it, or a rectangular box, like the one in the left
margin of the previous paragraph. The oval and rectangle point out material in
the livetext that may be of interest to you. Often, it explains the same material,
but in a more interesting and lively way. Make the CD an integral part of your
learning experience.

0.1 Computer organization

Twenty years ago, the internet did not exist, and most new computer science stu-
dents had never used a computer. Back then, typical programming texts began
with instructions on how to use a computer: how to turn it on, how to open a file,
how to save, how to make a backup copy. No longer. Today, most students in
most of the world are quite comfortable navigating the web.

Still, most students have never opened up a computer or really thought about
what is inside. In this section, we describe the major pieces and how information
is stored.

We can view a personal computing system as consisting of the items shown
in Fig. 0.1, which can be classified as follows:

1. The Central Processing Unit, or CPU. This is the core of the computer.
2. Memory. Contains data that the computer is processing. This data is lost

when the computer is turned off.
3. Hard drive. Long-term data is kept here. The data is generally not lost

when the computer is turned off.
4. Peripheral units: a keyboard, monitor, mouse, printers, scanners,

CD/DVD units, cameras, small storage devices like floppy disks and zip
disks, and more.

5. Ethernet and wireless connections to the internet and networks.

This view of a computer has not changed much in the past 40 years, although

Tip: The first
lesson in the
livetext (the
accompanying
CD) explains
how to use the
CD. You will
miss a lot if
you do not read
it.

our ability to connect peripherals and the speed and flexibility of the connections
has changed tremendously. For example, just ten years ago it was necessary to
shut down a computer in order to attach most peripheral devices like hard drives
and network connections. Wireless and ethernet were not available to consumers.
Today we use USB (Universal Serial Bus) and firewire (spearheaded by Apple)
to connect most peripherals, and we can just “plug and play”.

The CPU
The central processing unit, or CPU, is perhaps the hardest part of the organ-

ization to understand. Its main purpose is to continually fetch instructions from
memory and execute them. An instruction might be an addition, a subtraction, a
test for one value being less than another, a command to store a value in a par-
ticular part of memory, a command to write a value onto the hard disk, and so on.
CPUs have various registers in which to store temporary values.

A CPU is usually on a small chip, a piece of silicon with wiring on it and
with a metal housing and connectors to the outside. The chip in your computer
might contain several million electrical elements, called transistors, all wired
together.

Some computers have two CPUs, which share the load of executing instruc-
tions. Also, most chips these days speed performance by carrying out several
instructions at a time. Almost all computers have a graphics card, which provides
an interface to the monitor and does much of the processing needed to make the
monitor function quickly and smoothly. There is also a cache, where data that is
used frequently is stored so that it does not have to be fetched from memory or
the hard disk every time it is required. Such features complicate the logic of the
CPU tremendously.

fetch next
instruction from

memory

decode
the

instruction

execute
the

instruction

registers
(hold information

temporarily)

the CPU

0.1 Computer organization 5

Figure 0.1: Simplified view of a computer system

memory CPU

keyboard

mouse

monitor
hard drive

scanner

zip drive

printer

...

ethernet, wireless connection

Activity
1-1.2

Memory
There are generally two kinds of memory. ROM, or read-only memory, con-

tains data that can only be read. For example, the set of instructions that the com-
puter executes when it starts up, or boots, is in ROM. RAM, or random-access
memory, can be written as well as read. Memory is physically designed to pro-
vide extremely fast access to it, while access to a hard disk is much slower. Fast
access to RAM is important because the CPU is constantly reading and writing
RAM as it executes instructions. Because electricity maintains the data in RAM,
the contents of RAM is destroyed when the computer is turned off.

Computers store information, such as words, numbers, sounds, and pictures,
as a series of 1s and 0s, or bits (binary digits) because it is physically easy to
build devices that represent 1 or 0. A device is on or off, is magnetized or not,
has current running through it or not, allows light through it or not, and so on.

Humans normally write integers in the decimal number system. We have ten
digits at our disposal, and we count like this: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. After all
ten digits are used up we need two digits to keep counting, and ten is written as
a 1 followed by a 0: 10. Similarly, after 99 comes 100.

In computer memory, integers (and all other data) are stored using the bina-
ry number system, in which only two digits are used: 0 and 1. Counting in bina-
ry follows the same algorithm as in the decimal number system, but with fewer
digits. First, we count through all the digits: 0, 1. Because there are no more dig-
its, the next number, two, is represented by 10. So the decimal number 2 is the
same as the binary number 10. They are just different representations of what we
call “two”. In the binary system, after 10 comes 11, and then 100 (“four”).

6 Chapter 0 Computers and programming

Figure 0.2: Decimal, octal, hexadecimal, and binary numbers

0 0 0 0
1 1 1 1 20

2 2 2 10 21

3 3 3 11
4 4 4 100 22

5 5 5 101
6 6 6 110
7 7 7 111
8 10 8 1000 23

9 11 9 1001
10 12 A 1010
11 13 B 1011
16 20 10 10000 24

20 24 14 10100
64 80 40 1000000 26

decimal octal hexadecimal binary power of 2

Fig. 0.2 shows some integer values in the decimal system; the octal system,
which uses eight digits; the hexadecimal system, which uses sixteen digits (0 ..
9, A .. F); and the binary system. As can be seen, the decimal integer 20 is writ-
ten as 24 in octal, 14 in hexadecimal, and 10100 in binary. You will encounter
hexadecimal numbers during your programming career and occasionally see
octal numbers. A hex dump, for example, is a low-level printout of computer
memory. Because 16 is a power of 2, binary numbers can be translated easily into
hexadecimal, which is easier to read and interpret than binary.

Computer memory consists of a sequence of bytes, each of which consists
of eight bits. As shown in Fig. 0.3, the first byte is numbered 0, the second 1, the
third 2, and so on. This number is called the address of the byte, and bytes are
often called memory locations.

Early computers had at most a few thousand bytes, and memory was expen-
sive, on the order of a penny a bit. A megabyte is 220 = 1,048,576 bytes, so at
the 1950 price of a penny a bit, 512 megabytes of RAM would cost over
$83,000! A gigabyte is 1024 megabytes. These days, 512 megabytes (“half a
gig”) of RAM, which costs only a few hundred dollars, is considered a good
amount of RAM in a new computer. But in three years, it will probably not be
enough to run the latest operating systems and applications well, especially the
latest 3D immersive games and complex movie and photo editing software.

Because there are only eight bits in a byte, the largest integer that can be put
in a byte is 11111111, or 28 - 1 = 255. To deal with larger integers, several con-
tiguous bytes are used. For example, suppose we use four bytes to store an inte-
ger; that is 32 bits. Since the sign of an integer has to be represented too, the
range of integers that can be stored in the four bytes is –231..231–1.

Figure 0.4 describes some basic facts about binary numbers.

Storage devices
Most desktop and laptop computers come with an internal hard disk, and it

is easy to attach external hard disks for extra storage, backup storage, and mobile
storage —floppy disks (which are becoming extinct), zip drives, memory sticks,
and so forth. A pretty good desktop at the time of this writing comes with an 80
gigabyte hard drive, 512 megabytes of memory, and any number of other exter-
nal drives, depending on the buyer’s choice. This is quite in contrast to the early

1. A binary number that consists of a 1 followed by 0s
is a power of two. For example, binary 10000 = 24

= sixteen.
2. A binary number that consists entirely of 1s is 1

less than a power of two. For example, binary 111
= 23 - 1 = seven.

3. To double the value of a binary number, append a
0. For example, 1010 is ten, and 10100 is twenty.

0.1 Computer hardware 7

byte 0 10100101

byte 1 01001000

byte 2 11111111

byte 3 00000001

. .

. .

. .

Figure 0.3: Bytes in memory Figure 0.4: Binary number tidbits

1980s: Macintosh desktop computers in 1983 came with no internal hard drive,
memory of about 256,000 bytes (1/4 megabyte!), and only a 3/4 megabyte flop-
py disk drive. (We sometimes wonder how anyone ever got any work done with
such low-powered hardware.)

All storage devices use the same system of storing data that memory does:
a sequence of bytes. But the way these bytes are stored, physically, differ from
device to device.

0.2 Computer software

Computers are almost as common as microwave ovens and DVD players.
People use computers for many common tasks: word processing, main-
taining checkbook records, surfing the internet, and playing games.
They use computers, often without knowing it, when they use an ATM,
pay a bill by credit card, make a telephone call, and even drive their car
(at least the newer cars). Most people, however, do not know how a
computer works or how it is told what to do. They use computers only
for services provided by applications written by others. Microsoft Word,
Apple’s iTunes, the browser that you use to surf the internet, the mailer
you use to send and receive email, the thing that downloads an MP3 file,
and the thing that plays the MP3 file —all these are examples of appli-
cations.

A program is simply a set of instructions to be carried out or executed by a
computer, much like a cooking recipe is a set of instructions for a chef (or you)
to carry out. A program is written in a notation called a programming language.
The language could be C, C++, Java, Python, ML, Scheme, Fortran, or one of
hundreds of other programming languages that have been developed since the
advent of computers in the 1940s. The task of a programmer is to program, i.e.
to write a programs. In this text and accompanying CD, you will learn how to
program (i.e. write programs) in the Java language, one of the newer and more
popular programming languages.

An application is a collection of programs that together accomplish some
task, like the collection of programs that make up Microsoft word or the Norton
utility to service your hard disk.

Compiling and executing a program
Programming languages are designed for humans to write and read.

Programs, sometimes called source programs, cannot be executed immediately
by a computer because they are not in the language of the computer itself, called
the machine language.

Consider the expression x+y*z, which can appear in almost any program-
ming language. The machine language version of this expression could consist
of detailed instructions that do the following (remember: a register is a place in
the CPU to hold a value).

8 Chapter 0 Computers and programming

1. load the value y from memory into register 1
2. load the value z from memory into register 2
3. multiply registers 1 and 2, putting the result in register 1
4. load the value of x from memory into register 2
5. add registers 2 and 1, putting the result in register 2

Of course, these instructions need to be represented as binary (or hexadeci-
mal) numbers. Writing in the machine language, or a symbolic version of it
called an assembly language, can be tedious and error-prone, and that is why
“high-level” languages like Java have been developed.

So how does a Java program get executed? First, a software program called
a compiler translates the Java program into an equivalent machine language pro-
gram. Then, the machine language program is executed. The compiler makes
sure that the program is syntactically correct, i.e. it follows the grammar rules of
the programming language, including punctuation. If not, the compiler does not
translate the program. When attempting to compile a program, we often get com-
pile-time error messages, telling us what is syntactically wrong with the source
program. We then have to fix these syntactic errors and try to compile again. We
guarantee that you will see many of these error messages!

Deep thought: a compiler must have been written to compile the first com-
piler. How?

Now that you know a little bit about programming languages, we give you
a perspective on the field of programming by presenting a brief history.

Early programming languages
During the early 1950s, when commercial computers first became widely

available (to companies, not to individuals, because the computers cost millions
of dollars), the main programming languages used were assembly languages. It
took a long time to write, test, and debug an assembly-language program; con-
sequently, programs had very little functionality, meaning they did not do much
by today’s standards. Not much emphasis was placed on how to write programs,
i.e. on the programming task. Instead, maintaining the massive, expensive com-
puter was the focus of most effort! Input to these computers was either by “IBM
punch cards” or paper tape, which had to be prepared on other machines; there
were no simple keyboards and mice attached to these computers! Generally, one
gave the program to the systems group, who inputted it to the computer, ran it,
and gave you back the program and the output —perhaps several hours later.

In the middle 1950s, the programming language Fortran I was developed
and a compiler was written for it by IBM under the direction of John Backus (it
took over 30 man-years to produce!). Fortran had the essential components of
most procedural programming languages today: assignment statement, condi-
tional statement, for-loop, variables, arrays, and subroutines (procedures and
functions). It was the first widely used procedural language. Backus and his col-
leagues worked extremely hard to make the compiler and the machine-language

0.2 Computer software 9

programs that it produced very efficient because most programmers those days
felt that they were far more competent in producing an efficient program (in
assembly language) than any compiler could be. If Fortran was not efficient, they
felt, no one would use it. Nevertheless, Fortran caught on quickly because writ-
ing in Fortran was so much quicker and less error prone than writing in an
assembly language.

The year 1960 saw the emergence of three more languages: Lisp, a function-
al language (emphasizing expression evaluation and function calls, not assign-
ment statements), developed by John McCarthy at MIT; Algol 60, a procedural
language, which was developed by an international committee consisting main-
ly of Americans and Europeans (Backus and McCarthy were on it); and COBOL
(standing for COmmon Business-Oriented Language), which was developed
under the auspices of the U.S. Department of Defense, with help from computer
manufactures and universities. Also, at about this time, research into the devel-
opment of compilers for programming languages became one of the hot topics in
computer science.

The 1960s saw the development of many more languages, many based on
these four. But these four languages grew in use more than any other: Fortran in
industry; Algol 60 in academia; Lisp mainly in the field of artificial intelligence
in computer science departments; and COBOL in data processing activities with-
in industry.

The software crisis
The problem throughout the 1960s was that the appetite for more function-

ality in programs outgrew the capability of the programmers to produce them.
There was relatively little research on programming itself, so there was little
progress on how to design, develop, test, and debug programs. As project teams
and their proposed products grew in size, more and more projects failed to meet
their deadlines, went way over their budgets, or were disbanded as failures.
People talked of the software crisis.

As an illustration of the problem, clients reported hundreds of errors each
month with one operating system, and fixing these errors inevitably introduced
more errors. Imagine how many people had to be employed simply to process
error reports, find the source of errors, fix them, and disperse the changes to cus-
tomers. (There was no internet at the time, so communicating software changes
to clients was not easy.)

Here were some of the issues that faced programming teams. How does one
write program parts that can easily be reused? How does one design a large pro-
gramming system? How does one manage a programming team consisting of ten
or more (sometimes hundreds of) people? How is a large programming system
to be tested and debugged as pieces of it are completed? How does one control
the different versions of parts of the system, as pieces are created, tested,
debugged, and changed? When a large system is finally given to customers, how
is it to be maintained —changes have to be made due to error reports, to requests

10 Chapter 0 Computers and programming

for new functionality, and to changes in hardware and operating systems; and
these changes have to be tested, debugged, and finally sent to customers.

Compounding the problem of dealing with large programming systems was
the fact that there was no systematic methodology for specifying and writing
even small programs. If people could not write small programs effectively and
correctly, how could they be expected to write large ones effectively and cor-
rectly?

In 1968, a conference was held in Garmisch, Germany, sponsored by NATO
and chaired by F.L. Bauer of Munich. It was attended by the best computin peo-
ple from academia and industry. For the first time programmers, researchers, and
managers publically admitted that they did not know what they were doing when
it came to designing and implementing programs. The term software engineering
was mentioned, practically for the first time, and, in fact, the conference became
known as the NATO Conference on Software Engineering. (Since then, software
engineering has come to mean: the study and use of systematic and effective
processes and technologies for supporting software design, development, and
maintenance activities.)

There were glimmerings of hope; some people talked about preliminary
research on correctness of programs, programming methodology, and software
engineering issues. But the important point was the realization, by everyone, that
programming and software engineering were not easy activities and that research
needed to be done to understand how to do them better. This conference was the
impetus for the great push forward in the 1970s on understanding these issues.

Structured programming
The early 1970s saw the emergence of work on stepwise refinement, or top-

down programming, by Nicklaus Wirth and others (see Sec.2.5). This basic idea
is that one should start with a specification of a program, written in English,
mathematics, or a mixture of the two, and transform it through a series of small
steps into a program. The idea has been put forth in other fields as well, as Sec.
2.5 shows.

A second, major, step forward was the work on structured programming, by
Edsger W. Dijkstra. The term concerned reliance on program structures like the
assignment statement, the conditional statement, the loop, and the subroutine
(now called function, procedure, or method) call in designing programs, eschew-
ing something called the goto statement, which was a mainstay of programming
at the time. In fact, in 1968, Dijkstra’s short article on the harmfulness of the goto
statement in the Communications of the ACM caused an uproar in computer sci-
ence circles, with several people rushing to defend the goto statement. But
Dijkstra was right, and today, the goto statement does not even exist in the pro-
gramming language Java.

Dijkstra’s use of the phrase structured programming was meant to encom-
pass not only the restriction to the kinds of statements discussed above but also
a way of thinking about programming, of developing programs. The program-

0.2 Computer software 11

ming process itself was to be structured, not only the resulting programs. His
work encompassed step-wise refinement, and it ultimately led to the next topic
to be discussed, correctness concerns and the formal development of programs.

Correctness concerns
Until the 1970s, work on programming languages and programs was aimed

mainly at how to execute programs (or have a computer execute them), not on
how to understand programs. In 1967, Bob Floyd wrote a paper, Assigning
meanings to programs, which gave the first inklings of how one could actually
prove, mathematically speaking, that a program was correct. Tony Hoare picked
up on Floyd’s work and wrote a paper (1969), An axiomatic basis for computer
programming, which provided the first definition of a programming language
that was in terms of how a program could be proved correct, rather in terms of
how it could be executed. This work was the foundation for a great deal of work
on mathematical theories of program correctness in the 1970s and 1980s. The
basic ideas found their way into programming texts as early as 1973, when
Conway and Gries provided in their text, An Introduction to Programming using
PL/I, a full account of understanding loops in terms of loop invariants.

However, at this point, the major idea was to take an existing program and
try to prove it correct, and this was extremely difficult. Far better would be to
develop a program and its proof hand-in-hand, with the proof ideas leading the
way, but the field did not know how to do this. In the mid 1970s, Edsger W.
Dijkstra published a paper and a book, A Discipline of Programming, which
indeed showed us how a program and its proof could be developed hand-in-hand.
The field of formal development of programs had emerged, and it was quite
active throughout the 1980s and 1990s. The basics of this field appear in stream-
lined form in Appendix IV, complementing our presentation of loops and loop
invariants in Chap. 7.

Object-oriented programming
Throughout the 1960s and 1970s, the main feature for structuring programs

was the subroutine, or method (procedure or function), as it is now called in
object-oriented programming. Like a cooking recipe, a subroutine is simply a set
of instructions that can be invoked or called to perform some service. Until it is
invoked, or called, it does not do anything. Books on cooking are organized in
the same way that programs were organized; simply as a collection of subrou-
tines, or recipes. There were attempts to add more structure, but the basic organ-
ization was still the recipe book.

The object-oriented (OO) approach provided a new structuring mechanism,
the class (and subclass), with its principles of inheritance, instantiation, overrid-
ing, and polymorphism. The OO approach gave us a new way to think about con-
structing programs, and it actually provided a wholly new and useful mechanism
for reusing program parts.

Actually, the first OO languages, Simula I and Simula 67, were developed

12 Chapter 0 Computers and programming

by Ole-Johan Dahl and Kristen Nygaard in the 1960s, but the ideas espoused in
them simply did not catch on. The field was not ready for them.

In the 1970s, Alan Kay's group at Xerox PARC used the ideas in Simula as
a platform for their development of Smalltalk, an object-oriented language that
got quite a bit of publicity. And in the 1980s, Bjarne Stroustrup started his devel-
opment of C++ as an object-oriented version of the programming language C,
and Bertrand Meyer created the Eiffel programming language. Object-oriented
programming had arrived as a useful tool.

Object-oriented programming is a complement to procedural programming.
Procedural programming consists of writing programs using assignment state-
ments, conditional statements, loops, and subroutine calls. Object-oriented pro-
gramming provides a new way of structure of programs that, ultimately, still con-
tain the procedural aspects within their subroutines (or methods, as they are
called in OO programming).

The programming language Java
Java is a relatively new OO programming language. Its roots are in a lan-

guage called Oak, developed under the direction of James Gosling at Sun
Microsystems in 1991 as part of the Green project; but it was introduced to the
world as Java in 1995. Java is based on C, but it has several significant advan-
tages.

First, Java is a relatively simple but powerful, well-designed, object-orient-
ed language. With Java, one can begin teaching object-oriented concepts in the
first week; with C++, this usually happens only in the second semester.

Second, the inventors of Java showed how Java programs could be embed-
ded in browsers as applets, and, by 1996, both Netscape and Microsoft browsers
supported applets. This meant that anyone who looked at your website could run
your applet.

Third, the Java language comes with a machine language into which com-
pilers have to compile Java programs. Called the Java Virtual Machine (JVM)
language, it defines precisely what the machine language equivalent of a Java

0.2 Computer software 13

µ

Figure 0.5: The process of compiling and running Java programs and C programs

Java
program

machine-language
program that

executes JVM
programs

C program C
compiler

equivalent
machine language

program

Java
compiler

equivalent
JVM-language

program

These two programs
are executed by the

computer itself

program is. This provides an unheard-of measure of portability. A Java program
runs the same on a Macintosh, a PC, Linux, Sun’s Solaris —on any computer that
implements a Java compiler and the JVM correctly. This is not the case, for
example, with programs written in C, C++, and Fortran. Why? Because these
programs interact directly with hardware, so on different hardware (i.e. on dif-
ferent kinds of computers), they may do different things. Java programs instead
interact with a JVM (which in turn interacts with hardware), so any operating
system that has a JVM can run any Java program.

The introduction of the Java Virtual Machine did have a drawback: pro-
grams ran slower in Java than in, say, C. Figure 0.5 explains this. At the bottom,
you see that a C program is compiled into the language of the machine on which
the compiler is running, and the resulting program is then executed by the
machine. A Java program, on the other hand, is compiled into the JVM, and then
another machine-language program has to execute the resulting JVM program.
This makes executing (or interpreting) a program up to ten times slower.

However, we are often quite willing to pay the price of slower programs
because in return we have a portable and simpler language. In fact, we do not
even notice the change in speed on many programs. Further, if a particular part
of a program has to be faster, we can program it in C (or another suitable lan-
guage).

Fourth, the language is safe. As an example of what this means, if a Java
program stores an integer somewhere, it is guaranteed that it will be used only as
an integer (and not, for example, as a string of characters). This safety has ram-
ifications that cannot be completely explained at this point, but here are two
examples. In some languages (e.g. C and C++), managing memory correctly is
very difficult; in Java, safety allows Java to handle memory management, so the
programmer is freed from that task. Secondly, because of safety (and other fac-
tors), a browser can run a Java program called an applet on your computer with
the assurance that it cannot store things on your computer, so it cannot destroy
files or wreak havoc in other ways.

Fifth, the object-oriented nature of Java allows the language itself to be rel-
atively small. Various parts that are usually part of a non-object-oriented lan-
guage are instead written as Java classes that accompany every JVM. Literally
thousands of Java programs, written as classes, come in an Application
Programming Interface (API), which your Java programs can use. For example,
all input and output (I/O) such as reading to or writing from a file, reading from
the keyboard, and drawing on the monitor are defined in classes that accompany
the language. I/O is not part of the language itself. But you do have to learn how
to use these prewritten classes.

14 Chapter 0 Computers and programming

Chapter 1

Object-Oriented
Introduction to Java

OBJECTIVES

INTRODUCTION

The first section of this chapter deals with the evaluation of expressions in Java.
Here is an example of an expression: 3 + 5. Java expressions differ slightly in
some respects from the math expressions you have seen. We hope that you will
immediately get on your computer, practice writing expressions, and see how the
computer evaluates them. Practicing on the computer with each topic will give
you a fluency in Java programming that is otherwise hard to come by. Appendix
I outlines how you can do this on your own computer.

The second section introduce the concept of a variable, which can be viewed
simply as a box into which a value can be stored, and how variables are used in
Java.

The major part of this chapter is an introduction to object-oriented program-
ming in Java, which will give you an understanding of the class as a fundamen-
tal mechanism for organizing and structuring programs. Interestingly enough, the
concept of classes was not even taught twenty years ago; today, we do not know
what we would do without it.

You will soon see that good programming style is important. Consistently
using a simple style that lets you see the structure of your program gives you a
chance to write correct programs. Not following a good style almost always leads
to chaos in your program and a consequent waste of time trying to write it, under-
stand it, and get it correct.

• Learn about expressions and types int, double, boolean, and String.
• Learn about declarations of variables and assignments to them.
• Learn the basics of object-oriented programming.
• Learn how to use classes from the Java API.
• Learn the importance of good style.

16 Chapter 1 Object-oriented introduction to Java

1.1. Types and expressions

In this section, we introduce you to basic Java expressions. Here are examples:

2 - 5

3

(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) * 2

2147483647 + 1

These expressions are like mathematical expressions that you have seen and
used before. You can use integer constants like 42, called integer literals in Java,
and you can use the operations defined in Fig. 1.1. Also, you can use parenthe-
ses to help indicate the order in which operations are to be performed, as in (3 +
4) * 2. If you do not use parentheses, operations are carried out using conven-
tional mathematical precedences:

• Unary - and + have highest precedence, so -5 + 6 has the value 1.
• Multiplication, division, and remainder come next, and sequences of

them are carried out from left to right. So, 4 + 3 * 6 / 2 * 3 is 4 + 18 / 2
* 3, which is 4 + 9 * 3, which is 4 + 27, which is 31.

• Addition and subtraction have lowest precedence, and sequences of them
are carried out from left to right. So 4 - 3 - 4 * 2 is 4 - 3 - 8, which is 1
- 8, which is -7.

Tip: Use les-
son 6 as a ref-
erence for
expressions
and the types
discussed in
this section.

Operator Operation Example Result

unary + no effect +6 6

binary + addition 5 + 6 11

unary - negation -(4 + 5) -9

binary - subtraction 4 - 5 -1

* multiplication 4 * 5 20

/ division 8 / 2 4

% remainder 13 % 3 1 (13/3 = 4 with remainder 1)

Figure 1.1: Basic integer operators in Java

Expression evaluation. Appendix I shows you how to evaluate expressions in a number of Java
platforms. Currently, for the purpose of evaluating expressions, the IDEs
DrJava and BlueJ offer the best support, although others plan to add support
this year. DrJava and BlueJ are free, and they are easy to download and install.
Whatever IDE your course is using, you can use one of these IDEs on your
own in order to learn.

There is a major difference between conventional mathematical expressions
and Java expressions. In mathematics, an expression may have any value. It
might get big, but so what? But when using a programming language like Java,
the values of expressions are stored in a computer, which is a finite, physical
device. There is a tension among the sizes of the values of the expressions, the
space the values occupy, and the speed with which the values can be operated on.
Allowing expressions to have any value may cause values to take too much space
and operations to take too long.

Java uses the concept of a type to let you declare the range of values that you
want to work with and the operations you want to use. We define type:

A type is a set of values together with a set of operations on them.

In mathematics, we use the word integer for the type consisting of the inte-
ger literals {..., -3, -2, -1, 0, 1, 2, ...} together with these basic integer opera-
tions: negation, addition, subtraction, multiplication, and division.

1.1.1 Type int

In Java, type int consists of the integers in the range -231..231-1 (by which
we mean the set of values {-231, -231 + 1, …, -1, 0, 1, … 231 - 1}). The
value 231 is 2 multiplied by itself 31 times, or 2147483648.

The usual operations of type int are: negation, addition, subtraction, multi-
plication, division, and remainder. (Unary + is also available, but it is rarely
used.) All int operations have int results.

The smallest and largest values of type int are difficult to remember, so
Java gives you a notation for accessing them:

Integer.MIN_VALUE: smallest int value: -2147483648.
Integer.MAX_VALUE: largest int type: 2147483647.

To see this, type this expression into Java and see what value it gives you:

Integer.MAX_VALUE

Overflow
If a value of an int expression gets outside the range of type int, overflow

occurs. When overflow occurs, the value is changed back into one that is in the
range of type int. For example, 2147483647 + 2 in mathematics evaluates to

Activity
1-1.2

Lesson page
6-2

1.1 Types and expressions 17

Gaining fluency. You will gain fluency in Java only by doing. As you read about expressions and
assignment, have your IDE (Interactive Development Environment) running on
your computer and practice typing in expressions and evaluating them. Experi-
ment, experiment! Often! For example, evaluate 5 / 2 and see what you get.
Type in Integer.MAX_VALUE and Integer.MAXVALUE + 2 and see what they
are. Try calling the mathematical functions with various arguments.

2147483649, but in Java it evaluates to -2147483647!

Integer.MAX_VALUE + 2 overflow occurs!

In your first programs, overflow will not be an issue. Just be aware that
expressions in Java yield a value that is determined by the type of the expression,
and if you try to produce a number outside the range of that type, overflow
occurs and your answers are probably not correct.

Integer division
Division, as in 7 / 2, yields a value of type int. Hence, the value of 7 / 2

cannot be 3.5. Instead, the value is truncated toward 0 to produce an int:

7 / 2 has the value 3
-7 / 2 has the value -3

This will seem strange at first, but you will get used to it. Just remember that,
because Java expressions are defined in the context of being evaluated on a com-
puter, within Java programs (and indeed most programming languages), the rules
are slightly different from conventional mathematics.

Finding out more about type int and its relation to other Java types
This section is a brief introduction to type int. It does not discuss its rela-

tion to other types that deal with integers. This introduction should satisfy your
needs for weeks to come. However, at some point you should investigate such
“integral types”. Chapter 6 contains a complete discussion of such types and
should be used as a reference.

1.1.2 Type double

Numbers written with a decimal point are of type double. Here are examples:

5. 4.3 .00000001

Java uses scientific notation to make double numbers like the rightmost one on
the line above easier to read. The rightmost number can be written as:

1E-8

Here, E stands for “exponent”, and the integer following it indicates how many
places to move the decimal point —in this case, 8 decimal places to the left. The
corresponding mathematical scientific notation would be 1*10-8. As another
example, 0.05E6 is equal to 50000: the E6 indicates to move the decimal point
6 places to the right.

Think about double values as approximations to the “real numbers”. They
are approximations because the number of digits that can be used is finite, while
a real number can have an infinite number of digits. For example, the fraction
1/3 is 0.33333..., where the dots ... represent an infinite number of 3s. But

Tip: See the
ProgramLive
glossary for a
definition of
scientific nota-
tion.

Lesson page
6-3

18 Chapter 1 Object-oriented introduction to Java

in type double:

1.0 / 3.0 is 0.3333333333333333

A double number such as 1.564E15 has two parts: the mantissa, which is
the part before the E, and the exponent, which is the part after the E.

1. In the number 1.564E15, the mantissa is 1.564. Mantissas can have
about 16 digits of accuracy. So, if you write 3.14159265358979324, it
will be rounded off to 3.141592653589793.

2. In the number 1.564E15, the exponent is 15. The maximum exponent is
308. So if you write 1E309, Java will tell you that the exponent is too
large. If you write 1E308*10, Java will evaluate this to Infinity, and
any values that are created using it as an operand are garbage.

Java has notations for referencing the smallest positive double value and the
largest positive double value. They are:

Double.MIN_VALUE (which is 4.9E-324)
Double.MAX_VALUE (which is 1.7976931348623157E308)

The basic operations on double values are:

unary - (negation, as in -(40E5 + 5.0))
unary + (non-negation, as in +5.1)
+ (addition, as in 5.0 + 6.0)
- (subtraction, as in 4.2 - 5.1)
* (multiplication, as in 4.0 * 6.2)
/ (division, as in 4.5 / 3.1)
% (remainder: 5.1 % 2.0, which is 1.0999999999999996)

The last operation illustrates an important point with regard to double oper-
ations: often, they give only approximations to the real result. One would think
that 2 goes into 5.1 twice, with a remainder of 1.1. However, a roundoff error
occurs because there is only a finite amount of space for each number. Computer
arithmetic give only an approximation to the answer: 1.0999999999999996.

The double operators have the same precedence as the corresponding int
operators.

1.1.3 Casting between int and double

If the operands of an operation (one of +, - , *, /, %) are of type int, the opera-
tion is an int operation and produces an int. Thus, 10 / 4 evaluates to the int
value 2. If the operands are of type double, the operation is a double operation
and produces a double. So, 5.0 * 2.2 evaluates to the double value 11.0.

If one operand of the operation is an int and the other is a double, the int
value is converted to a double value and a double operation is performed. For
example, the expression 2 + 3 + 4 * 5.2 is evaluated as follows:

Lesson pages
6-2 and 6-3
discuss casting
from one type
to another.

Lesson 6-4 dis-
cusses the fact
that double
operations are
approximations.

1.1 Types and expressions 19

1. int expression 2 + 3 is evaluated to yield the expression 5 + 4 * 5.2.
2. 4 is converted to the double value 4.0, and 4.0 * 5.2 is evaluated to

yield the expression 5 + 20.8.
3. 5 is converted to the double value 5.0 and the addition is performed to

yield the value 25.8.

This conversion of value from type int to type double happens automati-
cally; you do not have to worry about it. But, if you want, you can explicitly
request such a conversion, or cast as it is called in Java, by preceding the value
to be converted by the cast (double). (This “type cast” is actually another oper-
ator!) Here is an example:

5 / (double) 2

is evaluated as follows:

1. The value 2 is cast to type double, yielding the expression 5 / 2.0.
2. The value 5 is converted to double, yielding the expression 5.0 / 2.0.
3. double division is performed, yielding the double value 2.5.

Order of operations is important: to evaluate (double) (5 / 2) do the divi-
sion in int arithmetic, yielding 2, and then cast 2 to double to yield 2.0.

You can also cast double values to type int, using (int). In the expression
below, all operations are performed in double arithmetic, and then the result is
cast to an int:

(int) ((3.5 + 4.6) / 21.2)

When casting to an int, the value is truncated toward zero, so (int) 3.9 eval-
uates to 3 and (int) -3.9 evaluates to -3. Casts from double to int are not per-
formed automatically because they can lose information.

We say that type int is narrower than type double and type double is wider
than type int because every int value is a double but not the other way around.
A cast from int to double is called a widening cast, and a cast from double to
int is called a narrowing cast. Java performs widening casts implicitly, when
required, but narrowing casts must be explicitly given in order to be performed.

1.1.4 Type boolean and arithmetic relations

Another type that you will use frequently is boolean (named after George Boole,
a nineteenth-century mathematician who was one of the parents of logic). Type
boolean has only two values: true and false.

In Java, there are three operations on boolean values. We describe them
assuming that b1 and b2 are boolean expressions (their precedences are given
later):

• Negation, or not: !b1

Expression !b1 evaluates to true if b1 is false and false otherwise.

Lesson
page 6-6

20 Chapter 1 Object-oriented introduction to Java

• Conjunction, or and: b1 && b2

Expression b1 && b2 evaluates to true if both b1 and b2 are true and
evaluates to false otherwise. Operands b1 and b2 are called conjuncts.

• Disjunction, or or: b1 || b2

Expression b1 || b2 evaluates to true if either b1 or b2 (or both) is
true and to false otherwise. Operands b1 and b2 are called disjuncts.

For example, we evaluate the expression true && !(false || false):

1. false || false evaluates to false,
so the expression becomes true && !false.

2. !false evaluates to true,
so the expression becomes true && true.

3. true && true evaluates to true.

You are not likely to use operations !, &&, and || very much in the begin-
ning. However, we need type boolean in order to talk about arithmetic relations,
which yield boolean values. Assuming that e1 and e2 are both int or double
expressions, we can use the following arithmetic relations:

e1 < e2 true if e1 is less than e2 and false otherwise.
e1 > e2 true if e1 is greater than e2 and false otherwise.
e1 <= e2 true if e1 is at most e2 and false otherwise.
e1 >= e2 true if e1 is at least e2 and false otherwise.
e1 == e2 true if e1 and e2 are equal and false otherwise.
e1 != e2 true if e1 and e2 are different and false otherwise.

For example, the expression 5 + 3 < 9 evaluates to true, and 5 + 3 < 8 eval-
uates to false. The operators <, >, <=, >=, ==, and != are called relational oper-
ators.

Be careful with equality: The phrase 5 = 6 is not a Java expression! Java uses
the sign == for an equality test, rather than =, and uses = in another way, which
we describe in Sec. 1.2. For example, 6 == 6 evaluates to true and 5 == 6 eval-
uates to false. This breaking of mathematical convention is unfortunate. For
hundreds of years, ever since Robert Recorde introduced the sign = for equality
in the 1600s, that convention has been in use. To have programming languages
break with that tradition is a travesty.

1.1 Types and expressions 21

Operator Operation Example Result

! not, or negation ! true false

&& and, or conjunction true && false false

|| or, or disjunction true || false true

Figure 1.2: Basic boolean operators in Java

Equality (==) and inequality (!=) can be used with operands of type
boolean. For example, true == true evaluates to true and true != true eval-
uates to false.

Type boolean is covered in detail in Sec. 6.7. Look especially at the mate-
rial on the marks of a boolean tyro at the end of Sec. 6.7.

1.1.5 Type String

Type String is different from the previous three types we introduced, in a way
that will be explained in Section 1.3.4. For the moment, we need just to be able
to write some String values and catenate them together.

The expression

"This is a String"

consists of a String literal: a sequence of characters enclosed in double-quote
marks ". The value of a String literal is simply the sequence of characters. You
can catenate two String values to yield the sequence of characters in the first
String followed by the sequence of characters in the second String using oper-
ator +. Thus, the expression

"First part" + " Second part"

has the value "First part Second part".
Operator + is overloaded; it is used for addition of two ints, for addition of

two doubles, and for catenation of two Strings.
If one operand of + is a String and the other is not, the other one is con-

verted to a String before the catenation takes place. Thus, the expression

"123" + 61

has the value "12361". Be careful when you use this feature. The two expres-
sions

"one" + 5 + 2 and "one" + (5 + 2)

have different values. (Type these expressions into your IDE and evaluate them.)
In the first one, the catenation of "one" and 5 yields "one5", and the catenation
of this value with 2 yields "one52". In the second expression, because of the
parentheses, the integer addition is done first and then the conversion to a String
is performed, with the result "one7".

How does one get the double-quote character itself in a String? By preced-
ing it by the escape character '\'. For example, the literal "a\"b" consists of
three characters: a, ", and b. But this means that the backslash cannot be used to
represent itself. Instead, use \\ to represent the backslash. For example, the lit-
eral "a\\b" consists of three characters: a, \, and b.

Lesson
page 5-3

22 Chapter 1 Object-oriented introduction to Java

1.1.6 Precedences of operators

We have seen arithmetic operators, boolean operators, and relational operators.
They can all be used in one expression, so we need to know their precedences.
The following table gives the precedences, with the highest precedence operators
first and the lowest ones last. For completeness, we include two operators that
we have not yet explained: ++ and --.

Unary operators: + - ++ -- ! typecast

Binary arithmetic operators: * / %

Binary arithmetic operators: + -

Arithmetic relations: < > <= >=

Equality relations: == !=

Logical and: &&

Logical or: ||

Here are some examples of the use of precedences to eliminate parentheses.

(3 + 5) > (4 - 6) can be written as 3 + 5 > 4 - 6,
because + and - have higher precedence than >.

(true && (3<5)) == (4>5) is the same as true && 3<5 == 4>5.

1.1.7 Function calls

Functions and function calls (or function invocations) are common in mathe-
matics. For example, the square root function is used frequently. The function
call sqrt(25.0) yields the square root of 25.0, which is 5.0. Here, sqrt is the
name of the function and 25.0 is the argument of the function call. Java allows
function calls as well, although Java names for the mathematical functions are a
bit longer than those in mathematics.

In Java, functions are defined in classes. The Java class Math contains def-
initions of many mathematical functions. Other examples of classes are Date,
which contains functions related to dates, and File, which contains functions
related to the file system on your computer.

Here is a Java function call to obtain the square root of 37.0:

Math.sqrt(37.0)

The prefix “Math.” is needed to indicate where the function resides: in class
Math.

Some of the function names in class Math are overloaded, which means that
the same name is used for two or more different functions. The type of the argu-
ment is used to distinguish between them. Functions with the same name gener-
ally do the same thing but on arguments of different types. Also, the type of the
result depends on the types of the arguments. For example, we have:

1.1 Types and expressions 23

Math.abs(-5) = absolute value of -5: int value 5
Math.abs(-5.0) = absolute value of -5.0: double value 5.0

Here is a partial list of functions in class Math:

Math.abs(a) = absolute value of argument a.
Math.sqrt(a) = square root of argument a.
Math.sin(a) = sine of argument a.
Math.min(a, b) = smaller of arguments a and b.
Math.max(a, b) = larger of arguments a and b.
Math.floor(a) = largest integer that is not larger than a.

For example, Math.floor(3.9) = 3.0.
Math.ceil(a) = smallest integer that is not smaller than a.

For example, Math.ceil(-3.9) = -3.0.

If you want the floor of a double value as an int, then you have to cast it:

(int) Math.floor(3.9) is the int 3.

1.1.8 Self-review exercises

These exercises will help you gain fluency with expressions in Java. Do not
restrict your experiments to these exercises. Make up your own. If you are not
sure what something does, study the material again, but also try it out. The more
practice you get, the more fluent you will be and the easier the later material will
seem to be.

SR1. Type the following int expressions into your IDE and see what their val-
ues are:

5 + 2 5 + 2 * 5 (5 + 2) * 5

4 - 3 - 3 4 - (3 - 3) -4 - -4 - -4

6 / 2 6 / 3 6 / 4

6 % 2 6 % 3 6 % 4

-6 % 4 6 % -4 -6 % -4

Integer.MIN_VALUE Integer.MIN_VALUE - 1

Integer.MIN_VALUE + 1

Integer.MAX_VALUE Integer.MAX_VALUE - 1

Integer.MAX_VALUE + 1

SR2. Evaluate the following double expressions:

5.0 + 2.0 1 + 1.99 (5 + 2.1) * 5

4.0 - 3 - 3 4.0 - (3 - 3) -4.0 - -4 - -4

6.0 / 2 6.0 / 3 6.0 / 4

6.0 % 2.1 6.0 % 3 6.1 % 4

-6.0 % 4 6 % -4.0 -6.1 % -4

Double.MIN_VALUE Double.MIN_VALUE - 1

24 Chapter 1 Object-oriented introduction to Java

Double.MIN_VALUE + 1

Double.MAX_VALUE Double.MAX_VALUE - 1

Double.MAX_VALUE + 1

SR3. Evaluate the following expressions to become familiar with casting
between int and double and the precedence of the casting operators.

5 + 2.0 7 / (double) 4 2 * (7 % 4)

5.0 + 2 (double) 7 / 4 2 * (double) (7 % 4)

(7 / 4) * 5 (double) (7 / 4) 2 * ((double) 7 % 4)

(7 / 4.0) * 5 2 * (7 % (double) 4)

(int) 5 (int) (double) 4

(int) 5.3 (int) (double) 4.3

(int) 5.9 (double) (int) 4.3

(int) -5.3 (int) (int) 4.3

(int) -5.9 (double) (double) 4

SR4. Type the following expressions into your IDE and see what their values are
to become familiar type boolean.

true true && false true || false

false true && true true || true

!true false && false false || false

!false !!true

true && false && true true || false || true

true && !false && true true || true && false

true || false && true true && true || false

true || (false && true) true && (true || false)

(true || false) && true (true && true) || false

true || true && false

SR5. Type the following expressions into your IDE and see what their values are
to become familiar with Strings.

"Truth " + "is" + "best"

("Truth " + "is") + "best"

"Truth " + ("is" + "best")

56 + "" + 56

SR6. Type the following expressions into your IDE and see what their values are
to become familiar with precedences of operators.

"" + 4 / 2 ("" + 4) / 2 "" + (4 / 2)

"" + 4 + 2 "" + (4 + 2) ("" + 4) + 2

4 + 2 + "" 4 + (2 + "")

4 + 2 < 6 4 + 2 < 4 + 3

4 < 3 == 3 < 4 4 < 3 == true || false

4 <= 4 && 2 < 4 4 < 3 != true && false

1.1 Types and expressions 25

3 >= 4 || 4 >= 3 true && false || true

-3 < 3 || 3 > -3 true && (false || true)

SR7. Reread Sec. 1.1.7 on function calls. Remember that, in a function call like
Math.abs(25 * -4), the expression 25 * -4 is called the argument of the func-
tion call. Have Java evaluate some calls to the functions in class Math.
Experiment with expressions that have two or more calls, for example
Math.min(25, 4) + Math.max(25, 4).

1.2 Variables, declarations, assignments

In mathematics, a variable is a name together with an associated value. In pro-
gramming, we use the same notion of a variable, and we draw a variable as a
named box with the value in the box. Below is an int variable called quantity
whose value is 4.

In Java, a variable may be associated with different values at different times, but
the values must all be of the same type. For example, quantity may be associ-
ated only with values of type int. When it is important to note what the type of
a variable is, we place the type to the right of the box. Below is the same vari-
able, quantity, and a second variable price, which is of type double.

In Java, a variable must be declared before it can be used. Below are Java
declarations for variables quantity and price. Note that each declaration con-
sists of three things: a type, the name of the variable, and a semicolon.

int quantity;

double price;

In any particular context, a variable can be declared only once. For example,

quantity 4
int

price 3.99
double

quantity 4

Activity
1-4.1

26 Chapter 1 Object-oriented introduction to Java

Variable names, identifiers, and keywords. A variable name, like quantity, is an identifier. In
Java, identifiers are writen as a sequence of letters, digits, $, and _, but the first
is not a digit. Java programmers do not use $ and tend not to use _ except in one
situation, which you will see later. Java programmers follow certain conventions
for identifiers, which we will explain from time to time. They are summarized
in Sec. 13.1.1.

Identifiers are case sensitive: truth and Truth are different.
Keywords (e.g. int and double) may not be used as identifiers. To see the

list of keywords, look up keyword in the glossary of the ProgramLive CD. In
most IDEs, keywords are shown in their own distinct color, so you should not
have trouble distinguishing keywords from identifiers.

we could not write this (try it in your IDE!):

int quantity;

int quantity; // This declaration is illegal

To place a value in a variable, use an assignment statement. Here are examples:

quantity= 8;

price= 3.99;

Execution of the first assignment statement evaluates the expression, 8, and
stores its value in variable quantity. The second assignment statement is exe-
cuted similarly, and quantity and price now look like this:

Any int expression may appear in place of expressions 8 and 3.99 in the
first assignment statement. For example, we can write this assignment statement
(which has the same result as the first assignment statement above):

quantity= 4 + 4;

There is one restriction: the type of the variable in an assignment statement
has to be the same as or wider than the type of the expression. For example, the
first assignment statement below is legal but the second one is illegal because
type int is narrower than type double. If the type of the variable is wider than
the type of the expression, the value of the expression is cast to the type of the

quantity 8
int

price 3.99
double

1.2 Variables, declarations, and assignments 27

Comments in Java. On this page, you see some text preceded with “//”. Such text is called a
comment. We write comments in a Java program to help us understand the pro-
gram. Comments are ignored by Java.

A comment that begins with // ends at the end of the line; it is called a sin-
gle-line comment. A comment can also have the form /* ... */; it can be a
multi-line comment. The comment may span many lines.

The assignment sign =. In the 1600s, Robert Recorde introduced the sign = to stand for equali-
ty, and after many years, the world universally adopted that convention. In the
late 1960s, the programming language C decided that = would be used for
assignment and == for equality, because programmers wrote more assignment
statements than equality relations. This change has caused more confusion and
wasted time than perhaps any other notational convention. Beginning program-
mers often ask why we write x = x + 1; —how could x and x + 1 be equal?

We write the assignment in the form

x= x + 1;

with no blank before the =, so that it does not look symmetric and is less liable
to be mistaken for an equality test.

variable before the assignment is performed.

price= 4; // legal: double is wider than int
quantity= 5.0; // illegal: int is narrower than double

Expressions with variables
We can write expressions not only with literals (for example, 4, 6.2, and

true), but with variables. Here is one such expression: price + 4.0. When an
expression with a variable is evaluated, the value currently associated with the
variable is used. For example, if quantity has the value 8 and price has the
value 3.99, the value of the expression

quantity * price

is 31.92. If the value of a variable changes, later evaluation of the same expres-
sion yields a different value.

Below, we show a sequence of assignments to int variables v1 and v2. As
each assignment is executed, one after the other, the new values of the variables
are as shown in the comments to the right of the assignment. The values are the
numbers that appear after the colons.

v1= 5; // v1: 5 v2: ?

v2= 3; // v1: 5 v2: 3

v1= v1 + 1; // v1: 6 v2: 3

v1= v1 + 2 + v1; // v1: 14 v2: 3

v2= v1; // v1: 14 v2: 14

v1= v2 + v1 + 1; // v1: 29 v2: 14

In mathematics, short variable names like x and y are common. In comput-
er programs, longer names tend to be used in order to give some indication of
their meaning, like price and taxIsIncluded. There is a tension between using
short names, in order to keep a program compact, and long names, in order to
provide more understanding. Our conventions for names are discussed in Sec.
13.1, and we recommend that you read the beginning of that section now.

The following convention is followed by Java programmers: a variable

Lesson page
13-2 discusses
naming con-
ventions in
detail.

28 Chapter 1 Object-oriented introduction to Java

Java syntax: Variable declaration
type variable ;

Example: double price;

Purpose: To declare that variable variable

is needed and that it can hold values of type

type. By variable, we mean the name of the

variable.

Java syntax: Assignment statement
variable= expression ;

Additionally: The type of the variable is the same as
or wider than the type of the expression.

Example: price= 8.99;

Purpose: To assign a value to a variable. To execute
the assignment, evaluate the expression and store its
value in the variable.

name starts with a lowercase letter. If the name contains several words, the first
letter of each word, except the first, is capitalized, e.g. numberOfApples.

Initializing declarations
You can combine the declaration and assignment statement

int price;

price= 5;

into an initializing declaration:

int price= 5;

1.2.1 Self-review exercises

In these exercises, you get practice with the assignment statement and using vari-
ables in expressions. DrJava provides an easy way to get this practice (by far the
easiest that we are aware of, in fact), but it can be done in other IDEs as well.

SR1. Type in this assignment statement and expression. What does Java say?
What does that tell you about the initial value of a variable?

int rooms;

rooms

SR2. Type in these two declarations. What does Java say? What do you infer
from this?

int temperature= 20;

int temperature= temperature + 1;

SR3. Type this declaration into Java:

int windChill= 5;

What assignment statement will add 10 to variable windChill? Type the assign-
ment into Java and have Java evaluate the expression windChill to see whether
you were right; the new value of windChill should be 15. In the same way, write
assignments (and execute and test whether they worked) to double the value of
windChill, to set the value of windChill to -10, and to square it.

SR4. Type this declaration and assignment into Java:

int daysOfRain= 45;

daysOfRain= daysOfRain / 2;

and then see what value daysOfRain has. Now try the same assignment state-
ment again, but this time use the literal 2.0 instead of 2:

daysOfRain= daysOfRain / 2.0;

What happens? Can you fix it by putting in a suitable type cast? Try to change

1.2 Variables, declarations, and assignments 29

the order of operations by applying the cast to the whole expression, using paren-
theses.

SR5. Invent some declarations and assignments yourself so that you become
thoroughly familiar with how they work. Include attempts to declare a variable
several times, assignments where you have to cast, and expressions that contain
calls to functions. (It is fun to see what happens when you intentionally do things
wrong. Do not worry; you will not break anything.) Use all the types we have
introduced: int, double, boolean, and String.

1.3 Classes and objects

1.3.1 The class as a file drawer of folders

Thus far, you have seen mostly primitive types: int, boolean, double, and so
on. But Java is object-oriented. In this section, we show you what that means:
what objects are and how they are created and used. Objects contain both data
(using variables) and instructions (using methods), much like manila folders con-
tain data and instructions in an office filing system. In fact, the similarities are
strong, and we use the analogy throughout this text.

An office typically has filing cabinets (see Fig. 1.3). Each drawer of a filing
cabinet contains manila folders. For example, each folder in a Patient file draw-
er might contain data for a different patient (patient name, billing information,
and so on). Often, all the manila folders in a filing cabinet drawer have the same
kind of data. For example, in a doctor’s office, Patient folders are not usually
in the same drawer as folders containing information related to building mainte-
nance.

The tab of each manila folder has a unique name. To generate unique names
easily, you can use the sequence a0, a1, …, a9, b0, b1, …b9, c0, c1, …. We will
use these names to uniquely identify which particular object a variable refers to.
(In the computer, the name is a memory address chosen by the operating system.
When tracing by hand, it can be any unique name.)

30 Chapter 1 Object-oriented introduction to Java

Figure 1.3: Two folders of class Patient

a0

getName()

billPatient(double)

Patient

P. Griesname

a1

getName()

billPatient(double)

Patient

D. Griesname

In Java, each file drawer is called a class, and each manila folder in the class
is called an object of the class, or an instance of the class. So, we use the terms
class and drawer interchangeably, and we use the terms folder, object, and
instance interchangeably. In Java, all the folders in a drawer contain the same
kind of information.

Figure 1.3 shows a file cabinet and two folders of class Patient. The fold-
ers are named a0 and a1. Each folder contains a box in its upper right corner that
identifies the class, or file drawer, where it belongs. We follow this convention
throughout this text.

A folder generally contains fields where data is entered. In the two folders in
Fig. 1.3, we have drawn a field named name, which contains the name of the
patient. There may be many more fields (birth date, billing address, medical his-
tory, and so on); in the interests of saving space, we show only name.

In a medical office, different people would handle a manila folder for a
patient in different ways. A secretary would fill out the non-medical fields such
as name and birth date. A doctor would make entries in the medical history when
talking to the patient. An accountant would handle the folder when billing the
patient. And so on. When processing the folder on a computer, we mimic these
processes by calling methods that reside in the folders. For example, in Fig. 1.3,
in each folder we have shown a method getName, which is used to retrieve the
name of the patient. This method is like a mathematical function because it gives
us a value. We have also shown a method billPatient. We call this method a
procedure, not a function. Method billPatient does not give us a value back;
instead, calling billPatient with a double value bills the patient that amount.

The methods that appear in each folder are called instance methods because
they appear in each instance of the class.

As a rule, it is considered unsafe to directly reference the fields of a folder
(both professional software engineers and your instructor will yell at you if you
make a habit of it), and that is why field name is grayed out in the two folders in
Fig. 1.3. Instead, as we will soon see, we use the instance methods to retrieve or
change the values in the fields.

1.3.2 Packages and the import statement

Java comes with over 2000 predefined classes. They are used for all sorts of
things. There are classes whose objects represent files on your computer, win-
dows on your screen, dates, menus that can be placed in windows on your screen,
lists of items, and so on. Because there are so many classes, Java organizes them
in packages. You can find out all you need to know about packages by reading
(the very short) Chap. 11.

One such package is javax.swing, which contains classes that are used in
applications that use GUIs (Graphical User Interfaces). Think of javax.swing
as a room that contains file cabinets full of classes that deal with GUIs. One class
in this package is JFrame, whose folders represent windows on your monitor, or

1.3 Classes and objects 31

computer screen. The full name of the class is javax.swing.JFrame. Here is
how we declare a variable of this class:

javax.swing.JFrame window;

Including the long package name can get pretty awkward. Working with
classes from package javax.swing.text.html.parser, for example, is cum-
bersome! Java provides a way to shorten this; the import statement allows us to
dispense with the package name and use only the class name.

If we use this import statement:

import javax.swing.JFrame;

we can declare a JFrame variable like this:

JFrame window;

Frequently, we want to use many classes from a package. Rather than write a
separate import statement for each class, we can use the wildcard character, “*”
to refer to all classes in the package:

import javax.swing.*;

Finding specifications of classes and methods in them
To use a class such as javax.swing.JFrame, you have to know what meth-

ods appear in the folders and what those methods do. The descriptions (or spec-
ifications) of all the predefined packages, classes, and methods are collectively
called the Application Programming Interface, or API. The specifications tell
you what the classes are for and what their methods do.

The latest version of the Java API specifications can be found on the world
wide web at this url:

http://java.sun.com/api/index.html

Appendix II explains how to use the API specs. You will access this site often
during your course on Java (and throughout your career as a Java programmer).

32 Chapter 1 Object-oriented introduction to Java

Figure 1.4: An object of class javax.swing.JFrame

a3

JFrame() getX()

JFrame(String) getY()

show() setLocation(int,int)

hide() getTitle()

getHeight() setTitle(String)

getWidth() isResizable()

setSize(int,int) setResizable(boolean)

toString()

JFrame

a3window

title

first Title

1.3.3 Objects of class JFrame

Class javax.swing.JFrame is a good class to study first because you will be
able to use it and see immediately the effects of calling methods of one of its
manila folders. An instance of JFrame is associated with a window on your com-
puter monitor. To create an object of class JFrame, use this assignment:

JFrame window= new JFrame("first JFrame");

Figure. 1.4 shows three things. On the left is the filing cabinet with a drawer for
class JFrame. To the right is the object, drawn like a manila folder, that is creat-
ed by execution of the above assignment; this object belongs in JFrame’s file
drawer. The name on the tab of the folder, a3, is arbitrary but different from the
names of all other folders. Finally, Fig. 1.4 contains a variable window, with the
name a3 as its value. We describe the process that created the picture.

First, the new-expression is evaluated:

new JFrame("first JFrame")

Evaluating this new-expression is a three-step process:

1. Create a new folder of class JFrame and give it a name.
2. Execute the call JFrame("first JFrame"), which causes the argument

to be stored somewhere in the folder. This String will be the title on the
window.

3. Yield the name of the folder as the value of the new-expression.

Take a look near the top left of the folder in Fig. 1.4. It contains “JFrame
(String)”, which indicates that method JFrame is in the folder and, when this
method is called, it has to have an argument that is a String. This is the method
that is called in step 2 above.

Second, once the new-expression yields its value, a3, the assignment state-
ment stores that value in variable window.

The contents of folder a3
We investigate the contents of folder a3 in Fig. 1.4. It has method

JFrame(String), as discussed above, several other instance methods, and an
instance variable title.

1.3 Classes and objects 33

Java syntax: new-expression
new class-name (arguments)

Example: new JFrame("title 1")

Purpose: Create a new folder of class class-name, ini-

tialize its fields using the call class-name(argu-
ments), and yield the name of the new folder as
the value of the new-expression.

Remember our brief discussion about how you should only rarely directly
access instance variables? In fact, there are ways to limit access to instance vari-
ables and methods that you write, and you will learn about them later when you
learn how to write your own classes. Folder a3 shows variable title, but it is
grayed out, and we cannot access it directly because the programmers who wrote
class JFrame have limited our access to it. (In fact, we do not know the real name
of this variable or precisely how the title is stored in it!) We display this variable
only to make sure that you know this is the folder for the given url. This discus-
sion perhaps seems a tad silly right now, but information hiding is a vital strate-
gy when writing large programs.

In the folder are some instance-method names followed by parentheses;
some have a type inside them, which indicate the type that an argument of a call
on the method must have. These are only a few of the methods that are in each
instance of class JFrame.

The instance methods are used to access and manipulate parts of the JFrame.
Of course, the name of a method is not enough for us to know precisely what it
does. For that, we have to look in the Java API specs —Appendix II tells you how
to do this. Here, we briefly discuss some of the methods.

When a manila folder of class JFrame is first created, the associated window
does not appear on your monitor. It is hidden. Execution of the procedure call

window.show();

causes the window to appear on your monitor, probably in the upper left corner,
and quite small. You can drag its lower right corner to make it bigger, and the
window will be like the right picture in Fig. 1.5.

In the call window.show(), “window” indicates that we are dealing with the
manila folder whose name is in variable window. The “.” is used to indicate that

34 Chapter 1 Object-oriented introduction to Java

Monitors and pixels. The word pixel, a shortening of picture element, is the smallest rectangle
that your monitor can draw. The upper left corner of your monitor is called pixel
(0, 0). In a pixel (x,y), x is called the x-coordinate and y the y-coordinate.
Value x measures the distance from the left of the window and y measures the
distance from the top of the window, both in pixels.

The position of each window on your monitor is given by the pixel (x, y) of
its top left corner. The height and width of a window are also given in pixels.

Activity 1-5.5
explains pixels
and talks about
the resolution
of a monitor.

Figure 1.5: Two instances of JFrame —windows on your monitor

a reference to a component of the folder follows; the phrase “show” is a reference
to procedure show within that folder; and the parentheses indicate the (empty) list
of arguments. In general, in order to access a component (variable or method) of
a folder, use the form

<variable that contains the name of the folder> . <component-name>

We summarize how you can create and show on your monitor a window that
is associated with a JFrame. Just type the following three lines into the
Interactions pane of DrJava, and the window will appear in the upper left corner:

import javax.swing.*;

JFrame window;

window= new JFrame("first Title");

window.show();

The first line says that the classes in package javax.swing may be used.
The second line declares variable window. The fourth line creates a manila fold-
er of class JFrame and stores its name in window. The fourth line shows the win-
dow on the monitor.

Getter and setter methods
A folder of class JFrame contains lots of information about the window with

which it is associated. One can generally get this information using calls on cer-
tain functions that appear in each folder of the class. In Java parlance, these are
called getter methods because they get a value from the folder. For example,
below, we show a few function calls and the results of their evaluation:

function call value
window.getTitle() title of the window
window.getHeight() height of the window, in “pixels”
window.getWidth() width of the window, in “pixels”

Thus, a getter method is a function that retrieves a value from an object.
A setter method is a procedure that sets (or changes) a value in an object. For

example, you can change the title of the window to “another title” by executing
the procedure call:

1.3 Classes and objects 35

Java syntax: instance-function call
variable . name (arguments)

Example: w.getTitle()

Purpose: To call the function name that occurs

in the folder whose name is in variable vari-

able. A function call is an expression and does

not end in a semicolon.

Java syntax: instance-procedure call
variable . name(arguments);

Example: w.setTitle("Peace");

Purpose: To call the procedure name that occurs in the

folder whose name is in variable variable. A procedure

call ends in a semicolon.

window.setTitle("another title");

We give the specifications of some of the method of class JFrame in Fig. 1.6.
We encourage you to experiment with class JFrame in your IDE. Create a

JFrame and assign its name to a variable such as window. Then, practice using
the methods of Fig. 1.6. For example, you can find out the width of window win-
dow by evaluating the call window.getWidth() and set the position of the win-
dow to (200, 300) by having this statement executed:

window.setLocation(200, 300);

As a more complex example, we develop statements that will change the
height of window window to its width, thus making the window a square. To do
this, we do two things:

1. Obtain the width of the window and store it in variable jfWidth;
2. Change the height of the window to jfWidth.

When determining how to perform a programming task, it helps to write it
down in English as a sequence of steps to be performed, as above. Then, we can
figure out how to write each of the steps in Java. Separating what to do from how
to do it is an example of separation of concerns, which is an important strategy
in any problem-solving task. Use it consciously to focus on one thing at a time.

We are also using a methodology called stepwise refinement. The develop-
ment consists of a series of steps. At each step, we “refine” part of the task into
more detailed steps, some of them in English and some of them in Java, until the
whole task has been written in Java. We discuss stepwise refinement in Sec. 2.5.

We return to the task of refining the two steps given above into Java. To see
how to obtain the width of the window (step 1), we look through the list of meth-
ods described in Fig. 1.6. There it is: method getWidth will do the trick. So, we
can write a statement:

36 Chapter 1 Object-oriented introduction to Java

window.show(); Show window window.
window.hide(); Hide window window.

window.getHeight() = height of window window, in pixels
window.getWidth() = width of window window, in pixels
window.setSize(w,h); Set width and height of window window to w and h

window.getX() = x-coordinate of top left corner of window window
window.getY() = y-coordinate of top left corner of window window
window.setLocation(x,y); Set x- and y-coordinates of top left corner of window to x, y

window.getTitle() = the title of window window (in the title bar)
window.setTitle(s); Set the title of window window to s (a String).

window.isResizable() = “window window can be resized by dragging it”
window.setResizable(b); If b is true (false) make window resizable (not resizable).

Figure 1.6: Calls on some methods in an instance window of a JFrame

int jfWidth= window.getWidth();

We now look in Fig. 1.6 for a method that will change the height of the win-
dow. The only one that looks appropriate is method setSize. But this requires
us to give as arguments both the width and the height. So, we use the statement:

window.setSize(jfWidth, jfWidth);

Combining the steps
We can eliminate the need for variable jfWidth by putting function calls as

arguments to method setLocation. Thus, instead of using the two statements
shown above, use the following single statement:

window.setSize(window.getWidth(), window.getWidth());

Note that the arguments are evaluated before the call setSize(…) is executed.

Primitive values versus class values
Consider variables x1, x2, u1, and u2 that are initialized as follows:

int x1= 5;

int x2= 5;

JFrame u1= new JFrame("peace");

JFrame u2= new JFrame("peace");

Variables x1 and x2 contain the same value: 5. Variables u1 and u2, on the other
hand, contain the names of objects, as shown in Fig. 1.7. Thus, there is a funda-
mental difference between values of primitive types (like int) and values of
class types (like JFrame). This difference has several ramifications in program-
ming, one of which has to do with testing for equality, which we now discuss.

About equality ==
The expression

x1 == x2

1.3 Classes and objects 37

Figure 1.7: Two different JFrame objects with the same content

a3

JFrame(String)

toString()

equals(Object)

...

(more methods)

JFrame

peace

title

a3

a4

JFrame(String)

toString()

equals(Object)

...

(more methods)

JFrame

a4

u1

u2

5

5

x1

x2

peace

title

yields true because x1 and x2 contain the same value. However, variables u1
and u2 contain different values. Indeed, there are two different objects, a3 and
a4, whose contents happen to be the same. In this situation, an equality test

u1 == u2

evaluates to false even though the two folders contain the same thing. This is
because the test is comparing the values in u1 and u2 (which are the folder names
a3 and a4), not the contents of the folders.

The value null
If we declare a variable u3 like this,

JFrame u3= null;

then u3 initially contains the value null, which means that u3 does not contain
the name of an object. In this situation, executing u3.getTitle() will cause an
error message to appear and execution to stop. (Try it!) So, before you try to
access components of u3, assign a value to the variable, using a new-expression
or perhaps an assignment like u3 = u1; (which copies the name from u1 into
u3).

The three kinds of methods
We have already discussed two kinds of methods. Calls to functions are

expressions and produce values. Calls to procedures are statements and do not
produce values; instead, they perform some task, like billing a patient or storing
a value in some variable.

The third kind of method is the constructor, whose only purpose is to assign
initial values to fields of a folder when the folder is created. The name of a con-
structor is always the name of the class, and a constructor can be called only in
a new-expression.

Above, we used the new-expression

new JFrame("first Title")

to create a new folder of class JFrame and call method JFrame(String) to ini-
tialize the folder with the value of the argument "first Title". Method JFrame
is a constructor.

1.3.4 Objects of class String

Now that we know about objects, we can state that a String is a class and
String value is the name of an object. After declaring a variable of type String
and assigning a value to it, as in

String s1= "xyz";

variable s1 looks like this:

38 Chapter 1 Object-oriented introduction to Java

Variable s1 contains the name of a folder of class String, and the folder con-
tains not only the string of characters but also many methods that are useful in
manipulating those characters. These methods are discussed in detail in Sec. 5.2.

Here is an important point: testing two String variables s1 and s2 using

s1 == s2

does not test whether they represent the same string of characters. Instead, it tests
whether s1 and s2 contain the same folder name, just like when two variables of
class JFrame are compared. To test whether the strings of characters in the fold-
ers named by s1 and s2 are the same, use the test s1.equals(s2).

Equality is discussed in detail in Sec. 3.2.4.

1.3.5 Key concepts

• Class. A class is a file drawer of folders. Each folder in a drawer has the same
components.

• Instances and objects. The terms folder, instance, and object are used inter-
changeably.

• Components: fields and methods. The possible components of an object are
fields, which are variables and, thus, contain values, and methods, which are
called to perform tasks.

• Procedures, functions, constructors. There are three kinds of method. A call
to a function produces a value. A call to a procedure performs some task but does
not produce a value. A call to a constructor initializes some or all fields of a
newly created object. A method call can have arguments, which are expressions.
The values of the arguments are used in some fashion when the method is called;
the specification of the method explains how they are used.

• New-expression. Evaluation of a new-expression new class-name(arguments)
creates a new object of the class, initializes its fields by calling constructor class-
name, and yields as its value the name of the newly created object.

• Class as a type. A class name may be used as a type, and a variable declared
with that type can contain the name of a folder of that type. For example, vari-
able w of type JFrame can contain the name of a folder that goes in JFrame’s file
drawer.

• Null. The value null represents the absence of the name of an instance. If a

a6

"xyz"
Stringequals(String)

charAt(int) ...s1 a6

1.3 Classes and objects 39

variable u contains null, then attempting to access a component using u.com-
ponent-name gives an error message.

1.3.6 Self-review exercises

This section introduced many new concepts, and it is important that you digest
them at this point because the rest of the text builds on them. One way to gain
understanding is to use an IDE to practice using the new concepts.

SR1. In your IDE (probably DrJava), create some folders of class JFrame, make
them appear on your monitor (by calling method show), and drag the windows
to different positions and give them different sizes. Now, experiment with call-
ing the methods of Fig. 1.6 in these folders.

SR2. In this exercise, you will study class Date, which is in package java.util.
Execute these statements in your IDE:

import java.util.*;

Date d= new Date();

Evaluate d to see what value it has. You see the date and time at which the new
Date folder was created. Have your IDE evaluate this function call:
d.getTime(). The value printed is the number of milliseconds since 1 January
1970, 00:00:00 GMT (Greenwich Mean Time) until the time given by variable
d. That is a lot of milliseconds!

Class Date has methods that allow you to get and set the various parts of a
date and time. Most of these are deprecated (literally, lessened in value) because
there are now better (often more complex) ways to achieve their functionality.
The API specification for class Date tells you about this. These methods make
great examples, though, so we still use them. We list some of the methods below;
their names should be enough for you to understand what they do.

getYear() getMonth() getDay()

setYear(int) setMonth(int) setDay(int)

getHours() getMinutes() getSeconds()

setHours(int) setMinutes(int) setSeconds(int)

They come in set/get pairs. Often, a property has both a setter and a getter
method. Sometimes a property is read-only, in which case no setter method is
provided.

The argument for setYear is a bit peculiar. Before you begin setting any-
thing using setYear, first evaluate d.getYear() and then read the Java specifi-
cations for setYear and getYear.

There are at least two ways to find out whether setHours and getHours use
12-hour (AM/PM) or 24-hour time. What are they?

40 Chapter 1 Object-oriented introduction to Java

SR3. In this exercise, you will study class Point and practice reading the API.
Class Point is in package java.awt, so type this import statement into Java:

import java.awt.*;

Now open this url in your browser:

http://java.sun.com/api/index.html

In the upper-left frame in the window, click on “java.awt”. In the lower-left
frame, scroll down and select “Point”. In the right frame you will see a descrip-
tion of class Point. Notice that it says that an instance of class Point is a point
representing a location in (x, y) coordinate space, specified in integer precision,
by which they mean type int. Scroll down until you see “Field Summary”,
“Constructor Summary”, and “Method Summary”. These show you the compo-
nents of every object of class Point. On a piece of paper, draw one folder
(instance) of class Point, putting in it all the components. Do not forget to draw
x and y as variables, and for each method, include the types of its parameters.

Create two instances of class Point:

Point p1= new Point();

Point p2= new Point(5, 6);

Class Point lets you access the fields x and y. See what their values are in
p1 and p2. For example, evaluate p2.x.

In the Point webpage, the summary for x does not say what its initial value
is. To find out what value x has when you do

new Point()

click on “Point()” in the Constructor Summary. See whether the information
that comes up tells you. Then use the back button to get back to the Constructor
Summary.

Now look through the Method summaries. Type in some method calls and
see what happens. For example, try, one after the other, these method calls:

p2.getX()

p2.translate(5, 6);

p2.getX()

See what function toString gives you by typing in p2.toString().
Experiment until you are familiar with Point and its methods.

1.4 Customizing a class to suit our needs

1.4.1 A subclass definition

Suppose we want to change the title of a JFrame to contain its origin (the posi-

1.3 Classes and objects 41

tion of its top-left corner). For example, if the origin is (5, 3), we want to set
the title to "(5, 3)". From Fig. 1.6, we see that procedure setTitle sets the
title. As we learned in Sec. 1.3, if we declare and initialize a JFrame variable jf,
the following expression will produce the desired String:

"(" + jf.getX() + ", " + jf.getY() + ")"

Note that this is a catenation of three strings and two ints, and the two ints are
obtained by calling getter methods getX and getY. Using this expression, we can
set the title of the window like this:

jf.setTitle("(" + jf.getX() + ", " + jf.getY() + ")");

Try this statement in your IDE to make sure it works. Do not forget to import
the classes of package javax.swing and call method show.

Customizing JFrame: your first class, your first method
Every time we drag the window associate with a JFrame jf to a different

position, we want to fix the title in a simple manner. To do this, it would sure help
to be able to execute a method call that does this:

jf.setTitleToOrigin();

JFrame does not have this method. However, we can produce a customized ver-
sion by extending JFrame.

In the rest of this section, we define a new class called OurFrame (your first
class definition!) that has all JFrame’s methods and fields plus a new method,
setTitleToOrigin. In particular, we want to be able to execute the following
code, which should create an instance of OurFrame, show it, and set its title to its
origin:

OurFrame ourWindow= new OurFrame();

ourWindow.show();

ourWindow.setTitleToOrigin();

OurFrame objects should behave just like JFrame objects, plus they should
have method setTitleToOrigin. Below is the outline of the definition of class
OurFrame, which must be placed in a file named OurFrame.java:

42 Chapter 1 Object-oriented introduction to Java

Java syntax: Subclass definition
public class subclass-name extends superclass-name {

declaration of methods and fields
}

Purpose: To define a new file drawer, named subclass-name, and des-
cribe the contents of its manila folders (instances of the class). They
have the methods and fields that are defined in superclass superclass-
name as well as the methods and fields being defined in the subclass.

Style Note
13.2, 13.2.5
indentation
conventions
for classes

import javax.swing.*;

public class OurFrame extends JFrame {

place here the declaration of method setTitleToOrigin
}

Class OurFrame is called a subclass of JFrame, and JFrame is a superclass
of OurFrame. OurFrame acts just like a JFrame in most ways, but it is customized
to have additional behavior.

The first line of file OurFrame.java makes available to the file all the class-
es in package javax.swing. The rest of the lines define class OurFrame.
Keyword public indicates that this class is accessible to all other classes. The
clause extends JFrame says that an instance of this class has all the components
—methods and variables— that a JFrame has.

We encourage you to type in this class (everything but the italicized words),
compile it, and try using it just as you did JFrame. Method setTitleToOrigin
has not yet been defined, so your new class will behave in every way like a
JFrame.

We now add the declaration of method setTitleToOrigin within the curly
braces { and }. Below is your first method declaration:

/** Set the title of this instance to contain the origin of the window */
public void setTitleToOrigin() {

place here statements to set the title
}

Keyword public indicates that this method is accessible from anywhere.
Keyword void indicates that the method being defined is a procedure. Within the
curly braces we will place the statements that set the title to the origin. The curly
braces, together with any statements in between, constitute the body of the
method.

We encourage you to type this method into class OurFrame (everything but
the italicized words). After compiling, you can now call ourWindow.setTitle-
ToOrigin(); (although nothing will happen yet).

We now figure out how to set the title. We want to place something like this
statement in the body of method setTitleToOrigin:

Style Note
13.2, 13.2.4
indentation
conventions
for methods

Style Note
13.1, 13.1.3
class names

1.4 Customizing a class to suit our needs 43

Java syntax: Procedure definition
public void procedure-name (parameter-declarations) {

sequence of statements
}

Purpose: To define a procedure named procedure-name, declare its
parameters, and give the sequence of statements to execute when the
procedure is called. Each parameter declaration has the form type vari-
able, and adjacent parameter declarations are separated by commas.

jf.setTitle("(" + jf.getX() + ", " + jf.getY() + ")");

But we cannot use the name jf because that variable name is not available
in method setTitleToOrigin. We need something more general, which can
refer to this instance, the object in which the method resides. Java uses the key-
word this for this purpose. So we put this statement in the body of
setTitleToOrigin:

this.setTitle("(" + this.getX() + ", " + this.getY() + ")");

Class OurFrame is in Fig. 1.8. Our sequence of statements now works!

OurFrame ourWindow= new OurFrame();

ourWindow.show();

ourWindow.setTitleToOrigin();

Compile class ourFrame in your IDE and then experiment with it. After execut-
ing the above statements, drag the window to a different place on your monitor
and then execute the call to method setTitleToOrigin again.

The manila folder for an instance of class OurFrame
Earlier, we showed how to draw an instance of a class as a manila folder,

with the name of the folder in the tab, the name of the class in a box in the upper
right, and the methods and fields in the folder itself. Drawing a folder of class
OurFrame is slightly different because it extends class JFrame. An OurFrame
manila folder has to have all the methods and fields that a JFrame has plus those
that are defined in OurFrame.

We show a manila folder of class OurFrame in Fig. 1.9. The folder has two
partitions. The top partition shows all the methods and fields that an instance of
superclass JFrame has. The bottom partition has the methods and fields that are
defined in subclass OurFrame. Of course, all the methods in both partitions are
available for use.

It is easy to remember how to draw such a folder. The superclass partition is
at the top, and the subclass (sub means under) partition is underneath the super-
class partition.

44 Chapter 1 Object-oriented introduction to Java

import javax.swing.*;

public class OurFrame extends JFrame {

/** Set the title of this instance to contain the origin of the window */
public void setTitleToOrigin() {

this.setTitle("(" + this.getX() + ", " + this.getY() + ")");

}

}
Figure 1.8: Class OurFrame, which is placed in file OurFrame.java

1.4.2 Remembering data: adding variables to the subclass definition

Now assume that the user of subclass OurFrame wants to be able to retrieve the
old value of the title. They have dragged the window to another spot and would
like the ability to remember where it used to be. We can help them out by plac-
ing a field in OurFrame that gives the previous title. Variables are used to remem-
ber values, so we introduce a variable to remember the previous title:

public class OurFrame extends JFrame {

/** class invariant: previousTitle is previous title (initially "")*/
private String previousTitle;

}

The declaration of field previousTitle differs from declarations you have
seen because of the access modifier private, which indicates that the variable
can be accessed only in this class itself. No other class will be able to refer to it
directly. Instead, they must use the setter and getter methods for it, which get val-
ues and store values in fields. You see the variable grayed out in the folder of Fig.
1.11.

The comment that precedes the declaration of the field has the title “class
invariant”. A class invariant describes what the values of the fields should con-
tain, and it is the duty of each method that is called to ensure that that descrip-
tion is true when the method is finished executing. We often write such a class
invariant, and whenever we write a method, we make sure that the class invari-
ant is true when the method is finished.

Every object of type OurFrame will have its own copy of previousTitle.
Take a look at procedure setTitleToOrigin in Fig. 1.10. It now contains

two statements instead of one. The first statement evaluates the current title,
using a call to function getTitle, and stores the current title in field
previousTitle. The second statement then sets the title of the window, as
before. When the method is called, the statements are executed one at a time, in
the order in which they appear.

Figure 1.10 contains a getter method, named getPreviousTitle. This
method is a function, not a procedure. We know this because the return type is

Style Note
13.4

describing
variables

1.4 Customizing a class to suit our needs 45

Figure 1.9: A manila folder for instance ours of class OurFrame

ourWindow a1

a1

show() hide()

setLocation(int,int) etc.

setTitleToOrigin()

JFrame

OurFrame

class-type String instead of keyword void. This type defines the type of the
variable that the function returns.

Functions are different from procedures in that they return a value. To state
what a function returns, use a return statement, of the form

return expression ;

Execution of the return statement evaluates the expression, stops execution
of the function body, and yields the value of the expression as the result of the
function call. In getPreviousTitle, the expression is this.previousTitle,
and its value is the value in that field.

Drawing a folder that contains a field
Figure 1.11 contains an instance of the revised class OurFrame. We have

placed field previousTitle in it, as well as getter method getPreviousTitle.
Field previousTitle is grayed out to indicate that it is private, so it cannot be
referenced outside the class.

1.4.3 Self-review exercises

Hopefully, you have had your IDE open while you read Sec. 1.4 and have tried
making JFrames. These exercises will give you more practice with JFrames and
with writing customized window classes.

SR1. Type into Java this import statement:

import javax.swing.*;

46 Chapter 1 Object-oriented introduction to Java

import javax.swing.*;

public class OurFrame extends JFrame {

/** Class invariant: previousTitle contains the previous title (initially "") */

private String previousTitle= "";

/** Set the title of this instance to contain the origin of the window */
public void setTitleToOrigin() {

this.previousTitle= this.getTitle();

this.setTitle("(" + this.getX() + ", " + this.getY() + ")");

}

/**= the previous title (empty "" if none) */
public String getPreviousTitle() {

return this.previousTitle;

}

}

Figure 1.10: Class OurFrame, revised to maintain the previous title

Create an instance of class JFrame and assign it to variable myWindow. (Read the
beginning of Sec. 1.4 if you need help with this.) Now show the window, set the
title to "My Window", and evaluate myWindow.getWidth().

Execute these statements:

JFrame myOtherWindow= myWindow;

myOtherWindow.setSize(444, 777);

Evaluate myWindow.getWidth() again. You changed myOtherWindow; why did
myWindow’s width also change?

SR2. myWindow.getWidth() and myWindow.getHeight() get the width and
height of the window. myWindow.setSize(expression1, expression2); sets the
size of the window. Figure out a single Java statement that will swap the height
and width of the window to which myWindow refers.

SR3. Write a custom JFrame class called ResizerFrame that has a single method
swapDimensions() that sets the height to the width and the width to the height.
(You can base it on the code in OurFrame in Fig. 1.10 a few pages back.)
Compile it and then create an instance of ResizerFrame and assign it to a vari-
able rf. Now call rf.swapDimensions() and make sure it works.

1.5 Static components

If a method does not access fields of a class or other instance methods, there is
no need to place it in each folder of the class. An example of this is method sum,
below, whose body references only parameters a, b, and c:

/** = sum of a, b, and c */
public static int sum(int a, int b, int c) {

return a + b + c;

}

When writing such methods, we use keyword static. The presence of this key-
word indicates that this component does not belong in each folder of the class.
Instead, there is only one copy of the component, and it is stored right in the file

1.5 Static components 47

Figure 1.11: Revised instance ours of class OurFrame, with field previousTitle

ours a1

a1

show() hide()

setLocation(int,int) etc.

setTitleToOrigin()

getPreviousTitle()

JFrame

OurFrame

previousTitle ""

drawer for the class. Hence, a file drawer for a class can contain two kinds of
things:

1. manila folders of the class,
2. components that are declared with keyword static.

Class Math, which is public and, therefore, accessible everywhere, contains
many methods, and they are all static because there is no need to put them
inside folders. Instead, file drawer Math simply contains a lot of static methods.
It also contains two static fields, one of which is

Math.PI

which is a double value that approximates pi, the ratio of the circumference of
a circle to its diameter.

Property static will be discussed in more detail later. Here, we just want-
ed to make you aware of it because you are sure to see the keyword static from
time to time.

1.6 Graphics in a JFrame

We show you how to paint rectangles, circles, text, etc. in a JFrame. This process
shows the usefulness and flexibility of working with classes and objects and
extending (customizing) classes. Conceptually, there is nothing new in this sec-
tion; it is just a matter of learning about some more predefined classes in the Java
API and seeing how to use them. We keep this section short because the materi-
al is covered thoroughly and more easily in ProgramLive.

We will create another subclass of JFrame. The only thing we will do in an
instance of the subclass is to draw in it —lines, rectangles, ovals, text, and the
like, and in different colors.

Each instance of class JFrame contains a procedure paint, which is called
every time your system has to redraw the associated window (for example,
because it just became visible). This procedure does not do anything because its
body has no statement in it. But if we define a subclass of JFrame, we can cus-
tomize this procedure to draw pictures. We override procedure paint in JFrame
with a new one in the subclass.

Figure 1.12 contains a subclass GraphicsFrame of JFrame that defines
method paint. Here is the window that is shown by creating an instance of this
subclass and showing it —we resized the window before taking a snapshot of it:

We investigate procedure paint in Fig. 1.12. First, your program never calls

Activity 1-5.6
also discusses
JFrame’s
method paint.

48 Chapter 1 Object-oriented introduction to Java

paint directly; instead, the system calls paint whenever it has to redraw the
window —e.g. when the window is brought to the front or when it is moved.
Second, procedure paint has a parameter g of class Graphics. The instance of
class Graphics that is passed as an argument to paint contains the methods that
draw in the window.

Look at the body of paint. The first statement calls procedure g.setColor,
with argument Color.red. Class Color contains several constants, like
Color.red, that represent various colors. Execution of this call sets the color of
the pen so that anything drawn after this will be red. In the picture shown above,
the part of the circle that is showing would be red on your monitor.

The second procedure call draws an oval that will fit in the square whose
upper left corner is pixel (0, 0) —given by the first two arguments— and whose
width and height are both 40 (the second two arguments). Pixel (0, 0) is the ori-
gin of the window: its upper left corner. Half of the oval that was drawn is hid-
den by the title bar of the window.

We can change the origin by calling method g.translate. For example,
execution of the following statement moves the origin to the right 20 pixels and
down 30 pixels:

g.translate(20, 30);

Better yet, we can change the origin to the pixel right under the title bar by exe-
cuting this procedure call —the two arguments yield the correct number of pix-
els to move:

g.translate(this.getInsets().left,

this.getInsets().top);

If we insert this call as the first statement of method paint and create and
show an instance of class GraphicsFrame, the window will look like this:

Activity 1-5.5
explains pixels
and talks about
the resolution
of a monitor.

1.6 Graphics in a JFrame 49

import javax.swing.*;

import java.awt.*;

public class GraphicsFrame extends JFrame {

/** Draw a figure in the window accessed by g */
public void paint(Graphics g) {

g.setColor(Color.red);

g.drawOval(0, 0, 40, 40);

}

}

Figure 1.12: Subclass of JFrame with a method paint

Now, the upper-left corner of the rectangle that encloses the circle is just below
the left part of the title bar.

Class Graphics has many methods for drawing. Methods exist for drawing
a line, a rectangle, a filled rectangle (i.e. the whole rectangle and not just its bor-
der is painted), an oval, a filled oval, an arc of an oval, text, and more.

Class Color contains a number of constants, like Color.red. It also con-
tains methods for dealing directly with the RGB (Red-Green-Blue) coloring sys-
tem, which is used for much of the image manipulation in computers.

It will help your progress with Java to type in a class like GraphicsFrame
of Fig. 1.12 and to modify it to draw various lines, rectangles, and so on. You will
not only become familiar with the methods of class Graphics but you will also
gain fluency in the general task of writing method calls, using various expres-
sions as arguments.

If you try to draw a figure like the one in the left margin, draw it first on a
piece of paper, perhaps graph paper, and figure out roughly where each compo-
nent goes.

1.7 Programming style and programming habits

You have now written, debugged, and run a few small programs, and you are
beginning to have a feel for the programming process. The pieces of code you
have written so far are quite small, of course. But by the end of this course you
will have written programs that are perhaps several hundred lines long, and you
may start to find it difficult to remember all the pieces that you have written and
how they fit together. Several good programming habits will help you deal with
this complexity.

There are two goals of these programming habits. First, the habits will make
you a faster and better programmer. Second, other programmers will be able to
read and understand your programs with a minimum of effort.

If you want to continue in computer science, these habits are even more
important than they are for this introductory course. Second, third, and fourth-
year programming courses often have you write thousands of lines of code

In the professional world, creating programs that are readable by others is
even more important. Most programs live a long time and require maintenance
—changes to adapt the code to new and different requirements, upgrades in other
software, new hardware, and so forth. Frequently the author of the program will
not be around when maintenance is required (having been promoted, moved to a

A footnote on
lesson page 1.5
describes these
methods and
the Color con-
tants.

50 Chapter 1 Object-oriented introduction to Java

different project, or fired), so other programmers must be able to read and under-
stand the program.

Some programming habits concern syntactical measures, like indenting pro-
gram parts properly and using certain conventions for names of variables, meth-
ods, and classes. Other habits concern describing code in comments so that the
reader can understand how a program is designed.

It is important to practice good programming habits all the time. This will
possibly be an uncomfortable part of learning to program, but it is the part that
will help you the most in the long run.

From time to time, you will find short discussions on programming conven-
tions and style in this text. These are summarized in Chap. 13, and we suggest
that you skim that chapter now to get a sense of what it contains, and then return
to it at regular intervals to make sure that you understand and are following our
style conventions.

Exercises for Chapter 1

E1. Suppose d is of type double. For what values of x do the following expres-
sions give the same result, and for what values do they give different results?

(int) d

(int) Math.round(d)

E2. Do the same as exercise 1 for these two expressions:

(int) d

(int) Math.ceil(d)

(int) Math.floor(d)

E3. Write and test a class DoubleFrame that customizes JFrame to have a method
with this specification:

/** Double the width and height of this window */

public void doubleDimensions()

E4. Write and test a class SwitchFrame that customizes JFrame to have a method
with this specification:

/** Switch the width and height of this window */

public void switchDimensions()

E5. Write and test a class DateFrame that customizes JFrame to have a method
with the specification given below. Class Date has a special way of encoding the
month and year; use whatever that class gives you for a month and year.

Exercises for Chapter 1 51

/**

* Change this window as follows:
* Set the width to 150 + (the month of d)
* Set the height to 150 + (the year of d) % 200

* Set the title to d.toString()
*/

public void setByDate(Date d)

E6. Write and test a class DoubleVisionFrame that customizes JFrame to have
two procedures, createPartner() and resetPartner(). The task of procedure
createPartner in an instance of this class is to create and show another JFrame
that is the same size as this one and whose origin is 20 pixels down and to the
right of the origin of this one. Of course, if you drag either frame to another place
or resize it, the other frame will not automatically follow. The task of procedure
resetPartner is to again set the size of the partner frame to the size of the orig-
inal one and to move it 20 pixels down and to the right of the original frame.
Hint: you will need an instance variable (field) that will contain the name of the
instance of the second JFrame.

E7. Write and test a class StarFrame that customizes a JFrame to have two pro-
cedures, createStar() and resetStar(). The task of procedure createStar in
an instance of this class is to create and show four other JFrames; the width and
height of each is 1/2 the width and height of this frame. The four frames form a
four-pointed star around the original frame, each touching the original frame in
one of its four corners. The task of procedure resetPartner is to reset the four
frames so they have the size and position as stated for procedure createStar.
Hint: you will need four instance variables (fields), one for each of the four new
frames. Be sure to put comments near their declarations so that the reader can see
which is which.

E8. Write and test a class BullseyeFrame that customizes a JFrame and has a
method public void paint(Graphics g) that paints four filled circles with
the same center, so that it looks like a bullseye. The inner circle should be filled
with red and have a radius of 10; the next circle, black with a radius of 20; the
next, white with a radius of 30; and the outer circle, black with a radius of 40. In
which order should you paint the circles to get them to look right? Try from inner
to outer; then try from outer to inner. Rather than using g.drawOval, you will
need to find a method that draws a filled oval. Look online at the API for
java.awt.Graphics, and look for an appropriate method that begins with
“fill”. See Appendix II for instructions on how to navigate the API.

E9. Below is a subclass of JFrame that paints a face in the frame. The mouth is
placed 1/2 the radius of the face down from its center (10 + 20, 15 + 20) and is
1/2 the radius in length. The eyes are 1/3 of the radius of the face up and to the
left and right of the center of face. The diameter of an eye is 1/6 of the radius of
the face.

52 Chapter 1 Object-oriented introduction to Java

As a first step, type this class into your IDE and create and show an instance
of it. Then, draw it on graph paper so that you can see where its parts are.

The problem with this class is that the numbers are all hard-coded. Rewrite
the class so that it has the following fields, which are declared with initializing
declarations: (x, y) gives the origin of the rectangle that contains the face, and
r gives radius of the face. When making the change, declare the fields first and
recompile. Then, change the constants in one statement at a time, testing after
each one.

import java.awt.*;

import javax.swing.*;

public class FaceFrame extends JFrame {

/**

* Draw a face in the rectangle whose origin is (10, 15) and whose
* width and height are both 40.
*/

public void paint(Graphics g) {

g.translate(this.getInsets().left,

this.getInsets().top);

g.drawOval(10, 15, 40, 40);

// Draw the mouth

g.drawLine(10 + 20 - 5, 15 + 20 + 10,

10 + 20 + 5, 15 + 20 + 10);

// Draw the left and right eyes, green
g.setColor(Color.green);

g.drawOval(10 + 20 - 6, 15 + 20 - 6, 3, 3);

g.drawOval(10 + 20 + 6, 15 + 20 - 6, 3, 3);

}

}

E10. Add to the class of the previous exercise a method moveFace(int
originX, int originY, int radius) that changes the origin of the face and
its radius. The last statement in the method body should be a call to repaint the
frame: repaint();.

E11. In the previous exercise, look at a face with radius 60 so you can see it well.
Notice that the eyes seem to be looking to the right. Why is that? Why aren’t the
eyes centered? Fix the eyes—but do not hack! That is, do not simply try many
different things, hoping that one of them will fix the eyes. Instead, draw the face
on paper, putting in the bounding boxes of all ovals that are drawn and labeling
the various parts, distances, etc. If you do this carefully, you should be able to
see the problem.

E12. Write (and test) a class that customizes JFrame with another method that

Exercises for Chapter 1 53

paints a house, with a door, window, and roof.

E13. Write (and test) a class that maintains a time (hour and minute of the day).
There should be a way for a use to indicate that they want 12-hour time (e.g.
8:20PM or 8:10AM) or 24-hour time (e.g. 20:20 or 8:10), and method toString
should produce whatever is desired. The complete design of the class is up to
you, but remember, fields should be private.

54 Chapter 1 Object-oriented introduction to Java

Chapter 2

Methods

OBJECTIVES

INTRODUCTION

Methods —functions, procedures, and constructors— were introduced in Sec.
1.3.3. In this chapter, we describe methods in depth, showing not only how to
write them and to call, or invoke, them but also how they are executed by the
computer. We will discuss two kinds of Java methods: instance methods and stat-
ic methods.

2.1 Java methods are recipes

Cookbooks are filled with recipes. A recipe is a set of instructions for a cook to
carry out. Java classes are like cookbooks, and Java methods are like recipes.
Each method is a sequence of instructions for a computer to carry out.

Invoking a recipe or method
A recipe may require the use of another recipe. For example, a chocolate

cake recipe may contain the instruction

Use White icing, page 250.

When a cook reaches that instruction when making chocolate cake, they pause,

Activity
2-1.1

• Learn how to call methods based on their specifications.

• Learn how to design and write methods.
• Learn how to execute a method call, using a “model of memory”.
• Study a methodology for writing method bodies called stepwise refinement

or top-down programming.
• Learn how to conditionally execute a statement.
• Learn how to repeatedly execute a statement.

56 Chapter 2 Methods

make the white icing, and then continue with the chocolate cake recipe.
Similarly, Java methods can contain instructions to carry out other methods. In
Java, an instruction that pauses the current method and executes another method
is called a method call or invocation.

In Java, we say that a method is being executed while the computer (or you)
is carrying it out.

Parameters
Rombauer and Becker's Joy of Cooking has a recipe for Chocolate Apricot

Cake. This recipe merely says to make another recipe, for chocolate prune cake,
but to substitute apricots for the prunes. Thus, the call of the prune cake recipe
asks for a substitution of one ingredient for another:

Chocolate Apricot Cake

Follow the recipe for: Chocolate Prune Cake, but
Substitute for the prunes: 1 cup cooked pureed apricots.

Omit the spices
...

This substitution of ingredients in recipes, with the substitution being indicated
at the call on the recipe, is an important concept —much more so in program-
ming than in cooking! We illustrate how the concept works in terms of recipes.

First, let's write a recipe for Chocolate X Cake, where X is a fruit to be
named later. X is called a parameter of the recipe.

Chocolate (X) Cake

Sift: 1 1/2 cups cake flour
Resift with: 1/2 t baking soda, ...
Add: 1 cup X // Note the use of parameter X here
...

To use this recipe to make a chocolate prune cake, we use the instruction

Make Chocolate (prunes) Cake.

Executing this instruction results in following the Chocolate (X) Cake recipe
with prunes substituted for X. We can use the same recipe to make an apricot cake
as well:

Make Chocolate (apricots) Cake.

The Chocolate (X) Cake recipe is a parameterized recipe, with X being the
parameter. In the same way, methods in Java are parameterized sequences of
instructions.

We recommend that you reread this section (Sec. 2.1) again in a week, espe-
cially if you are confused about parameters and method calls in Java.

2.2 The black-box view of a method

You know that a method is the programming equivalent of a recipe. We now see
how methods are used in Java.

2.2.1 The anatomy of a method header

The definition of a method has three parts: specification, header, and body. Here,
we describe the first two parts, which are used to understand a call on a method.
When you call a method, we say that you are the client or customer of the
method. Below is a method definition, with the contents of the body not shown:

/** Draw a line in graphics window from
pixel (x1, y1) to (x2, y2) */

public void drawLine(int x1, int y1, int x2, int y2) {

…

}

The first part of a method declaration is a comment that describes what the
method does. It is called a specification. As you can see from the specification
given above, method drawLine draws a line in the graphics window.

The second part of a method declaration is the method header, which con-
tains (in order) these items:

• Modifiers. In this header, the one modifier, public, indicates that every
class can use this method. (You will see private methods later on.)

• The return type. Keyword void indicates that this method is a proce-
dure, which is a method that does not return a value. For a function, the
type of value the function returns replaces void.

• The name of the method, in this case, drawLine.
• Declarations of the parameters of the method, enclosed in parentheses

and separated by commas. Each parameter declaration consists of a type
and the name of the parameter (which is an identifier). In this case, all
four parameters —x1, y1, x2, and y2— are of type int.

The signature of a method consists of the name of the method and the num-
ber and types of is parameters. We write the signature of drawLine as follows:

drawLine(int, int, int, int)

The idea of a parameter was discussed in Sec. 2.1 when relating methods to
recipes. There, a parameter Xwas associated with a value —a bunch of prunes or
apricots. Similarly, in Java, a value gets associated with the parameter when the
method is called. The idea of a parameter may still seem foreign to you, so we
recommend that you memorize the following definition:

Parameter: A parameter is a variable that is declared within the
parentheses of a method header.

Style Note
13.1.1:

parameter
names

Style Note
13.1.2:

method names

Activity
2-1.2

2.2 Black-box view of a method 57

Above, we made a point of including the specification of a method as part
of its definition. The specification is not needed for the program to compile and
run; it is just a comment. But clients of your code need the specification to under-
stand how to use the method. Get in the habit of always writing the specification
of a method before you write the method body.

Here is some motivation: during your programming career you will come to
rely heavily on the online Java API specifications. The online specifications were
automatically extracted from the comments in the code and turned into HTML
web pages using a tool called Javadoc; those comments were written by pro-
grammers. Without those comments the API classes would be useless. When you
get a programming job you will have to write documentation: you will have no
choice! Also, if you learn to comment now, it will serve you well: programmers
who work with you will sing your praises.

Plus, you will get better grades.
In this chapter, we discuss mainly procedures and functions. A procedure

call is a statement: it is executed. A function call is an expression, with a type, so
it is evaluated. Throughout this chapter, we use the word method when dis-
cussing methods in general, and when we need to distinguish the two, we use
procedure or function.

Here is an example of a specification and header of a function.

Style Note
13.3.1:

method specs

58 Chapter 2 Methods

Java syntax: Typical procedure and function declarations
/** Comment describing what the procedure does */

public void method-name (parameter-declarations) { … }

Each parameter-declaration has the form type identifier (just like all vari-
able declarations). Adjacent parameter-declarations are separated by com-
mas. There may be 0 parameter declarations. In a function declaration, key-
word void is replaced by the type of value that the function calculates.

Ad hoc polymorphism. Polymorphism, from a Greek word meaning multiform, means “capable
of having or occurring in several distinct forms”. When we write the calls
println(5), println(b || c), and println("xyz"), it looks like one proce-
dure println is able to handle arguments of many types, and if that were the
case, this would be an instance of parametric polymorphism. Instead, in Java,
one writes several different procedures with the same name but with different
parameter types —the procedure name is overloaded. Java is able to distinguish
which procedure to call based on the types of the arguments of the call. This is
known as ad hoc polymorphism. We will see other types of polymorphism later
on, for polymorphism is an important feature of OO languages.

Polymorphism in programming languages was first discussed by Christo-
pher Strachey in 1967, but the first major language that included polymor-
phism in a big way was Robin Milner’s language ML, in 1976.

/** = the larger of x and y */
public int larger(int x, int y) { … }

You can tell that this is a function because of the type int after public, which
indicates the type of value that the function produces. The specification indicates
that a call to the function evaluates to the larger of the two parameters x and y.

2.2.2 The procedure call

We now explain how the method specification and method header are used in
writing a method call, or method invocation, as it is sometimes called.

/** Draw a line from pixel (x1, y1) to pixel (x2, y2). */

public void drawLine(int x1, int y1, int x2, int y2) {

…

}

Suppose we want to use procedure drawLine, shown above, to draw a line
in the graphics window from pixel (20, 20) to pixel (80, 40). Notice that if x1,
y1, x2, and y2 in procedure drawLine are replaced with 20, 20, 80, and 40, the
drawLine spec says that the procedure will do exactly what we want:

Draw a line from pixel (20, 20) to pixel (80, 40)

To write this statement in Java, we use a form of statement called the pro-
cedure call. Here is an example:

drawLine(20, 20, 80, 40);

This procedure call consists of:

• The name of the procedure, drawLine.
• A list of four integers, separated by commas and enclosed in parentheses;

these are the arguments of the call.
• A semicolon.

A method call has one argument for each parameter of the method. The first
argument corresponds to the first parameter, the second argument to the second

Activity
2-1.4

2.2 Black-box view of a method 59

Java syntax: Procedure call (or procedure invocation)
procedure-name (argument , ..., argument) ;

Each argument is an expression whose type is the same as or narrow-
er than the corresponding parameter of the procedure being called.

Example: drawRect(5, 10, 20, 30);

Purpose: We can view execution of a procedure call as doing what the
specification of the procedure call says (with the parameters in the
specification replaced by the arguments of the call).

parameter, and so on. The type of each argument must be the same as or narrower
than the type of the corresponding parameter.

In our example, since each parameter of procedure drawLine is declared
using keyword int, the corresponding arguments must be integer-valued.

Determining what execution of a procedure call does
Learn to rely entirely on the specification and header of the method to deter-

mine what a method call will do: simply copy the specification but replace each
parameter in it by the value of the corresponding argument. The result is a state-
ment that is equivalent to the call.

Here is an example. Consider this procedure:

/** Draw a rectangle with top-left corner at pixel (tx, ty) with
height h and width w. */

public void drawRect(int tx, int ty, int w, int h) { … }

To figure out what the call

drawRect(20, 30, 25, 40);

does, make a copy of the specification and replace each parameter in that copy
by the value of the corresponding argument:

Draw a rectangle with top-left corner at pixel (20, 30) with
height 40 and width 25.

The general form of a procedure call
A procedure call consists of:

• An identifier: the procedure name.
• Zero or more arguments, separated by commas and enclosed in parenthe-

ses.
• A semicolon.

There are several rules for the number and types of arguments:

• A method call has one argument for each parameter of the method.
• An argument is an expression, and its type must be the same as or nar-

rower than the type of the corresponding parameter.
• If a method call has no arguments, the parentheses are still necessary.

Thus far, the arguments of method calls have just been integers, but any
expression (of a suitable type) could be used. For example, the argument 40
could have been written as:

20 + 2 * 10

60 Chapter 2 Methods

Writing a procedure call
Suppose you have to write a program segment to carry out some task, and

you believe that a call to a certain method can be used for it. In such a situation,
try to rewrite the task so that it is the same as the specification of the method, but
with expressions instead of parameters. The call will then be easy to write.

For example, suppose we want to:

Draw a rectangle with top-left corner (20, 40) and
lower-right corner (40, 70).

Here is method drawRect again:

/** Draw a rectangle with top-left corner at pixel (tx, ty) with
height h and width w. */

public void drawRect(int tx, int ty, int w, int h) { … }

The specification is not written in the same form as the desired task. So, we
rewrite the task. The specification of drawRect uses the width and height of the
rectangle, so we figure out the formulas for them and rewrite the task as:

Draw rectangle with top-left corner (20, 40),
height 70 + 1 - 40, and width 40 + 1 - 20.

Because this rewritten task has the same form as the specification of
drawRect, we can easily write it in Java as the call

drawRect(20, 40, 40 + 1 - 20, 70 + 1 - 40);

Some programmers would look at the original task and immediately write
the call

drawRect(20, 40, 21, 31);

They have saved two steps. They didn't rewrite the specification, and they cal-
culated the width and height of the rectangle in their heads. You may do the same
thing as long as you don't make a mistake!

As you will soon see, one of the hardest parts of programming is to find and
correct mistakes. This process is called debugging. To debug, you run the pro-
gram with various test cases, detect errors in the output, find the programming
errors, and fix them. Often, more time is spent debugging than writing the pro-
gram in the first place. Obviously, if you don't put mistakes in a program, debug-
ging is much easier. You can approach this goal by developing a program in small
steps that you know are correct, even if this approach seems to take more time.

Above, we took the small step of rewriting the task so that it looked similar
to the specification of the method we wanted to call. We left to the computer the
task of calculating the width and height from their formulas. Both of these choic-
es helped eliminate potential errors.

Activity
2-2.6

2.2 Black-box view of a method 61

2.2.3 The function call

Writing a function call, or function invocation, is similar to writing a procedure
call. The parameter declarations tell us the types of the arguments to use in the
call, and the specification tells us what they are for. We give an example with a
bit of an oddity: x and y are used as parameter names as well as names of the
variables in the arguments. The process does not change: replace the parameter
names with the values of the corresponding arguments.

Recall method larger, whose specification and header we gave earlier:

/** = the larger of x and y */
public int larger(int x, int y) { … }

Suppose we want to find the larger of two expressions:

the larger of x * x + y and y * y + x.

The specification of function larger has the same form as our desired
value; it just has parameters x and y in place of the expressions x * x + y and y
* y + x. Therefore, the desired value will be calculated by the function call

larger(x * x + y, y * y + x)

Note that a function call does not terminate in a semicolon, the way a pro-
cedure call does. A procedure call is a statement to be executed; a function call
is an expression to be evaluated. For example, we could use a function call with-
in another expression:

45 + larger(x * x + y, y * y + x)

2.2.4 Self-review exercises for calls

Below are the specifications of a few methods:

/** Print x, x2, and x3 on a single line */

public static void print3(int x)

Activity
2-4.2

62 Chapter 2 Methods

Java syntax: Function call (or function invocation)
function-name (argument , ..., argument)

Each argument is an expression; its type is the same as or narrower than
the type of corresponding parameter of the function being called.

Example: larger(x * x + y, y * y + x)

Purpose: View evaluation of a function call as yielding the value given
by the specification of the function (with the parameters replaced by the
arguments of the call).

/** Print "true" if x + y > z */

public static void print4(int x, int y, int z)

/** = the value of the statement "x + y is greater than z" */
public static boolean testLengths(int x, int y, int z)

/** = the value of the statement "s contains the letter e" */
public static boolean containsE(String s)

/** = the larger of x2 and y2 */

public static int larger2(int x, int y)

For each of the following calls, state what it does, using the specifications of the
methods being called. For a procedure, the specification is a command to do
something; for a function, it is the value of the expression.

SR1. print3(3);

SR2. print4(3, 4, 5);

SR3. print4(a, a, b);

SR4. testLengths(b, b, b)

SR5. testLengths(b, c, c * c)

SR6. larger2(2, -3)

SR7. print3(larger2(4, -5));

SR8. print4(larger2(4, -5), 7, 9);

Answers to self-review exercises

SR1. Print 3, 32, and 33 on a single line

SR2. Print "true" if 3 + 4 > 5

SR3. Print "true" if a + a > b

SR4. the value of the statement "b + b is greater than b"

SR5. the value of the statement "b + c is greater than c * c"

SR6. the larger of 22 and (-3)2

SR7. Print z, z2, and z3 on a single line, where z is the larger of 42 and (-5)2.

SR8. Print "true" if t + 7 > 9, where t is the larger of 42 and (-5)2.

2.2 Black-box view of a method 63

2.3 Method bodies

You know about the caller’s view of a method (as opposed to the writer's view),
and you know how to understand a method call. In this section, we investigate
the third part of a method definition, the method body, and discuss its execution.

2.3.1 The procedure body

A procedure body is a sequence of statements enclosed in braces { }. Here is an
example:

/** Print b, c, and b + c on separate lines. */

public static void print3(int b, int c) {

System.out.println(b);

System.out.println(c);

System.out.println(b+c);

}

This procedure body contains three statements. Notice the indentation:

• The opening brace { appears on the same line as the header;
• The sequence of statements is indented; and
• The closing brace } appears indented exactly under the header.

This convention is used by many Java programmers. We use it throughout the
text.

Note: Class java.lang.System has in it a static variable out, which refers to
a PrintStream object. PrintStream objects deal with output and have a method
println, which prints its argument, followed by a new-line character.

Execute this statement in your IDE:

System.out.println("Howdy");

Compiling and calling static methods
Every method needs to be inside a class, so in order to test print3 we must

write a class in which to place it. Over the next few pages, we will write several
related methods, including print3. We will create a single class, PrintExample,

Style Note
13.2, 13.2.4:
indentation
conventions

64 Chapter 2 Methods

Java syntax: println procedure call
System.out.println(expression);

Example: System.out.println(5);

Execution: Place the value of the
expression in the Java console and then
start a new line (in the Java console).

Java syntax: print procedure call
System.out.print(expression);

Example: System.out.print(5);

Execution: Place the value of the expression in the
Java console (which is a window or pane that con-
tains error messages and output from such print
and println calls).

to contain them. PrintExample has nothing to do with JFrames or Dates or any
other API class that we have seen; rather, it exists only as an organizational tool.
We do not want to customize an existing class, so we leave off the extends
clause. We place the method inside the class as before:

public class PrintExample {

/** Print b, c, and b + c on separate lines */

public static void print3(int b, int c) {

System.out.println(b);

System.out.println(c);

System.out.println(b+c);

}

}

How do we call print3 with, say, arguments -3 and 4? Much like we write
Math.max(-3, 4) to call static method max in class Math. We write:

PrintExample.print3(-3, 4);

Before you continue, type class PrintExample into your IDE and have a call to
print3 executed.

Variable scope
The scope of a variable is the area of a program in which that variable can

be used. The scope of a parameter is the method body. Thus, two different meth-

2.3 Method bodies 65

public class PrintExample {

/** Print b, c, and b + c on separate lines */

public static void print3(int b, int c) {

System.out.println(b);

System.out.println(c);

System.out.println(b+c);

}

/** Print b + c */

public static void printSum(int b, int c) {

System.out.println(b + c);

}

/** Print b + c and b + c * c */

public static void printSums(int b, int c) {

printSum(b, c);

printSum(b, c * c);

}

}

Figure 2.1: Class PrintExample, with three procedures

ods can use the same name for a parameter. For example, we can define the fol-
lowing procedure inside class PrintExample (place it either before or after
method print3), even though it uses the same parameter names as print3:

/** Print b + c */
public static void printSum(int b, int c) {

System.out.println(b + c);

}

Within the body of method print3, b refers to the parameter declared in the
definition of print3; within the body of method printSum, b refers to the
parameter declared in the definition of printSum. The variables are not related.

2.3.2 Executing a procedure call

We now discuss how a procedure call is executed. This is necessarily a high-level
explanation. Later, we will give a lot more detail, giving a model that explains
precisely how Java method calls work.

Suppose we have two variables, x and y, with values 20 and 5. We draw
these variables as boxes, with the names to the left and the values inside:

In this situation, execution of the procedure call

PrintExample.print3(x, 2 * y);

proceeds as follows:

1. Draw the parameters of the method, as variables.
2. Evaluate the arguments of the call and store their values in the corre-

sponding parameters of the procedure.
3. Execute the statements of the body of the procedure.
4. Erase the parameters of the method.

In this case, argument x corresponds to parameter b and argument 2 * y cor-
responds to parameter c. Therefore, the first and second steps result in this state:

In performing step three, the statements are executed one by one, beginning
with the first. If a parameter name is used, the value of the parameter is used in
its place. In this case, execution of the method body results in three values being
printed on three separate lines: 20, 10, and 30. Finally, the parameters are erased.

It is important that you can execute a procedure call yourself, as just shown.
As you already know, a method body can contain calls on other methods. In

fact, it is typical for one method to contain several calls on others. As an exam-

b 20 c 10

x 20 y 5

66 Chapter 2 Methods

ple, we write a method printSums, which contains two calls to method
printSum. Class PrintExample, with all three methods discussed in this section,
appears in Fig. 2.1.

Method printSums go inside class PrintExample. Because printSum and
printSums are defined in the same class, procedure printSums can call
printSum without having to write PrintExample.printSum(...);.

At times, you may want to execute parts of a program by hand. In doing so,
there are two different ways that we might execute a call: by stepping over it and
by stepping into it. Most IDE debuggers have these two possibilities, and it is
essential that you understand the difference.

Stepping over a call
We describe what it means to step over a call. Suppose we are executing this

call to procedure printSums:

PrintExample.printSums(20, 6);

We have assigned the arguments to the parameters, so that we have this situation:

We are ready to execute the statements in the method body. The first state-
ment is a function call printSum(b, c). We execute it by stepping over the call.
To do this, we do what the specification of the procedure says to do: print the
larger of b and c. So, we place 26 in the Java console, yielding this state:

Thus, stepping over a call means simply to execute it as an indivisible
action, doing what the specification says to do.

Stepping into a call
Now, the second statement is to be executed: printSum(b, c * c);. We

execute this statement using the second method, stepping into the call. To do this,
we go through the detailed steps mentioned earlier: assign the arguments of the
call to the parameters of the method and then execute the method body. In this
case, the parameter names are b and c. To avoid mixing up the parameters b and
c for this new method call with those that already exist, we place them in boxes
as shown below. Each box has in its upper left a subbox that contains the name
of the method called.

b 20 c 6
Java console
26

b 20 c 6
Java console

2.3 Method bodies 67

We have carried out the first step of assigning the arguments 20 and 36 to the
parameters. Notice that there are 2 b’s and 2 c’s in the picture. These variables
are independent of each other.

We now execute the statement in the body of procedure printSum, printing
56 in the Java console:

Execution of the call to printSum is finished, so we erase the box. We are
now in this state:

We summarize:

• To step over a call, execute it as an individual action, doing what the
specification of the method does. The method being called is a black box
into which we cannot look, and we rely only on its specification.

• To step into a call, (1) draw the parameters of the method, (2) assign the
arguments of the call to the method, (3) execute the method body, and (4)
erase the parameters of the method.

Suppose you are executing a program yourself, or you are using a debugger,
presumably to find an error in the program. Which of these two ways you use to
execute a call will depend on the situation. If you are 100% sure that a method
is correct, you can step over a call to that method. However, if you believe an
error may be in a particular method, step into calls to it.

2.3.3 Conditional statements and blocks

The body of a method is a sequence of statements, which are executed in the
order in which they appear. So far, we have seen assignments and procedure calls
as statements that can appear in a method body. We now introduce three more
kinds of statement: the if-statement, the if-else-statement, and the block. The if-
statement and if-else-statement are examples of conditional statements.

Java console
20
56b 20 c 6

printSums

Java console
20
56b 20 c 6

printSums

b 20 c 36

printSum

Java console
26

b 20 c 6

printSums

b 20 c 36

printSum

68 Chapter 2 Methods

The if-statement
There are situations in which you would do something depending on

whether some condition is true. For example, if it is cold, you would put your
coat on, but not if it is warm.

In a Java program, a conditional statement is used for this purpose. As an
example, the statement below tests whether x < 0, and if so, it executes the
assignment x= -x;. But if x ≥ 0, the assignment is not executed.

if (x < 0) x= -x;

An if-statement has this form:

if (condition) then-part

where the condition is a boolean expression and the then-part is a statement.
To execute an if-statement, evaluate the condition; if it is true, execute the

then-part. If the boolean expression is false, execution of the if-statement is
finished.

The block
Suppose we want a statement that adds 2 to both x and y if x is larger than

y. To do this, we write the then-part of the if-statement as a block: a sequence of
statements enclosed in braces { and }. Here is the Java code for it:

// Add 2 to both x and y if x > y
if (x > y) {

x= x + 2;

y= y + 2;

}

The braces { and } are used to aggregate the sequence of statements into a

Style Note
13.2, 13.2.1:
indenting if-
statements

2.3 Method bodies 69

Java syntax: if-statement
if (boolean-expression)

then-part

Example: if (x < 0) {

x= -x;

}

Then-part: any statement

Execution: Evaluate the
boolean-expression. If it is true,
execute the then-part.

Java syntax: if-else statement
if (boolean-expression)

then-part
else

else-part

then-part and else-part: each is a statement

Example: if (x < y) {

y= y - x;
} else {

x= x - y;

}

Execution: Evaluate the boolean-expression. If true, exe-
cute the then-part; otherwise, execute the else-part.

single statement. In the if-statement shown above, the then-part consists of this
block:

{

x= x + 2;

y= y + 2;

}

Notice the indentation: statements inside a block are indented. The opening
brace is put on the same line as the condition. The closing brace appears on its
own line, indented the same amount as the if. (A method body is a block, so it
follows these conventions.)

We (and Sun Microsystems) strongly advocate using a block for the then-
part even if there is only a single statement within the braces, as in this example:

if (x < y) {

x= x + 2;

}

Why? Because often, after writing some Java code, we have to change it. Here
is an example of a fairly common occurrence, even among professional pro-
grammers. We have written this statement, without braces:

if (x < y)

x= x + 2;

and we want to change it so that the then-part adds 2 to y as well as to x. We are
quite likely to simply append the new assignment, yielding:

if (x < y)

x= x + 2;

y= y + 2;

But this is not correct because the braces are missing, and it is actually equiva-
lent to:

if (x < y)

x= x + 2;

y= y + 2;

Thus, if we don’t make the then-part a block right from the beginning, we are
liable to make a mistake if we have to change the then-part later on.

Hereafter, we always include the braces.

The if-else statement
At times, we want to execute one thing if a condition is true and another if

it is false. For this we use an if-else statement. Here is an example:

70 Chapter 2 Methods

// Set z to the minimum of x and y
if (x < y) {

z= x;

} else {

z= y;

}

If the condition x < y is true, the then-part {z= x;} is executed; otherwise,
the else-part {z= y;} is executed.

Here is the general form of an if-else statement:

if (condition) then-part
else else-part

where the else-part is a statement. To give a complete example, we write a pro-
cedure that prints the smaller of its two parameters.

/** Print the smaller of b and c */
public static void printSmaller(int b, int c) {

if (b < c) {

System.out.println(b);

} else {

System.out.println(c);

}

}

2.3.4 Self-review exercises for ifs

In the exercises that ask you to write code, it is best that you actually type them
into your Java IDE and test them to make sure that they work. We recommend
starting a class Chapter2Exercises that will contain all the static methods you
write for these self-review exercises.

SR1. Create a class called Chapter2Exercises that does not extend anything.
Write a public static void method called sr1 that has an int parameter x. Inside
method sr1, write a conditional statement that (1) adds 1 to x if x is negative and
(2) prints the value of x. To test this method, try these calls:

Chapter2Exercises.sr1(-3);

Chapter2Exercises.sr1(3);

Chapter2Exercises.sr1(0);

SR2. What is a block?

SR3. Write a conditional statement that, if x is negative, sets x to 0 and adds 1
to y. The then-part will have to be a block. (If you write this conditional state-
ment in a method, the method should have two parameters.)

Style Note
13.2, 13.2.1:
indenting if-
statements

2.3 Method bodies 71

SR4. Write a conditional that stores x in z and y in x if z is greater than 0.

SR5. Write a conditional statement to set z to the minimum of x + y and x - y.

SR6. In the following conditional statement, the else-part is written in English:

// Set d to the minimum of a, b, and c
if (a <= b && a <= c) {

d= a;

} else { // the minimum is b or c

Set d to the minimum of b and c
}

Replace the else-part by a Java statement to accomplish that task. You will end
up with a nested conditional statement: a conditional statement that appears
within another conditional statement.

SR7. In the following conditional statement, the then-part is written in English:

// Set d to the maximum of a, b, and c
if (a < b || a < c) {

Set d to the maximum of b and c
} else { // the maximum is a

d= a;

}

Replace the then-part by a Java statement to accomplish that task. You will end
up with a nested conditional statement: a conditional statement that appears
within another conditional statement.

SR8. Variables b, c, and d contain integers. Write a program segment that sets
boolean variable t to the value of “b, c, and d are the lengths of the sides of a tri-
angle”. Three integers are the lengths of the sides of some triangle if and only if
the sum of any two sides is at least the third side.

Answers to self-review exercises

For the answer to SR1, we provide class Chapter2Exercises and method sr1.
For the rest, we provide only the conditional code.

SR1. public class Chapter2Exercises {

public static void sr1(int x) {

if (x < 0) {

x= x + 1;

}

}

}

SR2. A block is a sequence of statements delimited by (enclosed in) braces {
and }. It aggregates the sequence of statements into a single statement.

72 Chapter 2 Methods

SR3. if (z > 0) {

x= 0;

y= y + 1;

}

SR4. if (z > 0) {

z= x;

x= y;

}

SR5. if (x + y <= x - y) { // you could write the condition as y <= 0

z= x + y;

} else {

z= x - y;

}

SR6. // Set d to the minimum of a, b, and c
if (a <= b && a <= c) {

d= a;

} else if (b <= c) {

d= b;

} else {

d= c;

}

SR7. // Set d to the maximum of a, b, and c
if (a < b || a < c) {

if (b >= c) {

d= b;

} else {

d= c;

}

} else { // This else belongs with the first if, not the second.
d= a;

}

SR8. There are several ways to write this program segment. The following one
illustrates nested if-statements:

if (b + c < d) { t= false; }

else if (c + d < b) { t= false; }

else if (d + b < c) { t= false; }

else { t= true; }

Here is a neater solution:

t= (b + c >= d) && (c + d >= b) && (d + b >= c);

2.3 Method bodies 73

2.3.5 The return statement

When a procedure is called, the statements in the procedure body are executed
one at a time, in the order in which they appear. However, it is occasionally
advantageous to terminate execution of the body before the last statement has
been executed. We use the return statement for this purpose. It has this form:

return;

Execution of a return statement terminates execution of the procedure body
and, hence, of the procedure call. Once a return statement is executed, no more
statements in the procedure body are executed.

Procedure printSmallest in Fig. 2.2 contains two return statements.
Suppose the call printSmallest(5, 6, 6); is to be executed. Then, parameter
b will be 5, c will be 6, and d will be 6. Therefore, the condition of the first if-
statement will be true, b will be printed, and execution of the return statement
will terminate execution of the procedure body and, hence, of the procedure call.
The second if-statement and the last print statement are not executed.

Consider a call printSmallest(6, 2, 5);. In this case, parameter b will be
6, c will be 2, and d will be 5. Therefore, the condition of the first if-statement is

Activity
2-3.4

74 Chapter 2 Methods

Java syntax: procedure return statement
return ;

Example: return;

Purpose: Terminate execution of a proce-
dure call.

Java syntax: function return statement
return expression ;

Example: return b + c;

Purpose: Terminate execution of a function
call and use the value of the expression as the
value of the function call.

/** Print the smallest of b, c, and d */
public static void printSmallest(int b, int c, int d) {

if (b <= c && b <= d) {

System.out.println(b);

return;

}

// { the smallest is c or d }

if (c <= d) {

System.out.println(c);

return;

}

// { the smallest is d }

System.out.println(d);

}

Figure 2.2: A procedure with return statements

false, so execution of the first if-statement is finished. The condition of the sec-
ond if-statement is true, so the value of c, or 2, will be printed, and execution
of the return statement will terminate execution of the procedure body and, thus,
of the procedure call.

Using an assertion to help the reader
The reader of a program can benefit from the insertion of comments at judi-

ciously chosen places in the program to alert them to what is true about the vari-
ables at those places. For example, after the first if-statement in this body, it may
help to indicate that b is not the smallest parameter. Such a description of the
variables is called an assertion because we are asserting that it is true at a point
of execution of the program. By convention, we enclose assertions in curly
braces (note that the curly braces are not part of the assertion). The braces alert
the reader to the fact that this comment is an assertion about the values of the
variables, not a specification or command to do something.

2.3.6 The function body

The procedure in Fig. 2.2 prints the smallest of its three parameters. In many pro-
grams, it may be useful to use the smallest of three values in a later calculation,
rather than print it, and in these applications, procedure printSmallest is use-
less. Instead, we need a function that calculates the smallest of three values and
returns it for later use. This function is given in Fig. 2.3.

A function must return a value. Therefore, execution of a function must ter-
minate by executing a return statement of the form

return expression ;

where the type of the expression is the same as (or narrower than) the type of the
result of the function. Execution of such a return statement terminates the func-

Activity
2-4.1

Style Note
13.2, 13.2.2:

assertions

2.3 Method bodies 75

/** = smallest of b, c, and d. */

public static int smallest(int b, int c, int d) {

if (b <= c && b <= d) {

return b;

}

// {the smallest is c or d}

if (c < d) {

return c;

}

// {the smallest is d}

return d;

}

Figure 2.3: A function that returns the smallest of its parameters

tion body, and, thus, the function call, and yields the value of the expression as
the result of the call.

Since execution of a function body must terminate with execution of a return
statement, a return statement is usually the last statement in the function body.
However, return statements may appear in other places as well, see e.g. Fig. 2.3.

Suppose the call smallest(2, 6, 6) is to be evaluated. Then, parameter b
is 2, c is 6, and d is 6. Therefore, the condition of the first if-statement is true,
and the then-part of that if-statement, return b;, is executed. This terminates
execution of the function body and yields 2 as the value of the function call.

Executing a function call
Earlier, we gave a list of four steps for executing a procedure call. The only

difference in executing a function call is that the value of the expression in the
return statement whose execution terminates the call has to be returned as the
value of the function. For purposes of completeness, we summarize here the
steps in executing a function call:

1. Draw the parameters of the function, as variables.
2. Evaluate the arguments of the call and store their values in the corre-

sponding parameters of the function.
3. Execute the statements of the body of the function.
4. To execute return e;, evaluate expression e, erase the parameters of the

method, and use the value of e as the value of the function call.

2.3.7 Local variables

A local variable is a variable that is declared within a method body. The scope
of a variable is the area of a program where it can be used. The scope of a local
variable is the sequence of statements that follows its declaration, up until the
end of the block in which it is declared. The declaration of a local variable has
this form:

type variable-name ;

Its initial value is unknown, and the variable cannot be referenced until a value
has been stored in it. An initializing declaration of a local variable has this form:

Activity
2-3.1

76 Chapter 2 Methods

/** Using g, draw a triangle that fits in the rectangle drawn by drawRect(x, y, w, h).
One side is the base of the rectangle; the other two sides meet at pixel (x + w / 2, y). */

public void drawTriangle(Graphics g, int x, int y, int w, int h) {

g.drawLine(x, y + h, x + w, y + h);

g.drawLine(x, y + h, x + w / 2, y);

g.drawLine(x + w, y + h, x + w / 2, y);

}

Figure 2.4: Drawing a triangle

type variable-name= expression ;

Method drawTriangle of Fig. 2.4 draws a triangle in a graphics window g.
Its body is not as easy to understand as it could be because of the many expres-
sions, some of which are duplicated. For example, the expression y + h appears
four times. Not only does this complicate the body, it is inefficient. We can make
the body clearer and more efficient by using local variables.

Figure. 2.5 shows the same procedure as in Fig. 2.4, but with three local
variables. While their declarations and initializations make the procedure look
longer, the statements that do the work (the three calls to procedure drawLine)
are easier to understand.

Note the use of a comment to describe what a local variable is being used
for. The comment mentions not only the local variable but other variables as
well. Variables are related to each other, and one often describes them together.

Quite often, a declaration of a variable is followed by an assignment that
provides the variable with its initial value. It is possible —and usually advanta-
geous— to combine the two into a single initializing declaration. For example,
the three local variables in Fig. 2.5 were declared and initialized using these three
initializing declarations:

int y= y + h; // (x, y1) is the left lower vertex
int x1= x + w; // (x1, y1) is the right lower vertex
int x2= x + w / 2; // (x2, y) is the top vertex

A variable can be declared only once, but it can be assigned many times. In

Activity
2-3.2

Style Note
13.4:

describing
variables

Style Note
13.1.1:

local-variable
names

2.3 Method bodies 77

/** Using g, draw a triangle that fits in the rectangle drawn by drawRect(x, y, w, h).
One side is the base of the rectangle; the other two sides meet at pixel (x + w / 2, y). */

public void drawTriangle(Graphics g, int x, int y, int w, int h) {

int y1= y + h; // (x, y1) is the left lower vertex

int x1= x + w; // (x1, y1) is the right lower vertex

int x2= x + w / 2; // (x2, y) is the top vertex

g.drawLine(x, y1, x1, y1);

g.drawLine(x, y1, x2, y);

g.drawLine(x1, y1, x2, y);

}

Figure 2.5: Drawing a triangle using local variables

Java syntax: local variable declaration
type variable ;

Example: int temperature;

Purpose: Introduce a variable that can be
used in the sequence of statements that fol-
lows the declaration.

Java syntax: initializing declaration
type variable-name= expression ;

Example: int temperature= 50;

Purpose: Introduce a variable that can be used
in the sequence of statements that follows the
declaration and give it an initial value.

the following sequence, the second declaration is illegal, since variable b is
declared in the first line. But the third line, the assignment to b, is legal.

int b= 45; // A legal initializing declaration
int b= 61; // An illegal declaration, since b is already declared
b= b + 2; // A legal assignment

2.3.8 Processing a range of integers

This section need not be read at this time. It is presented here so that instructors
who want to introduce loops early can do so. If you are not interested in study-
ing loops at this point, skip this section.

At times, we want to write a program segment to process a range of integers.
Here are some examples of tasks that we might want to perform:

• Add the squares of the integers in the range 1..100 (i.e. the integers 1, 2,
…, 100).

• Determine whether some integer in the range 2..n divides an integer k.
• Find the first integer in the range 100.. (i.e. the first integer ≥ 100) that is

a power of 2 (i.e. can be written in the form 2k for some k).
• Find the number of times the letter 'e' appears in String s (this requires

processing the possible indices 1..(s.length-1) of s).

Program segments to process a range of integers are usually written using a
loop, and often with what is called a for-loop. Chapter 7 covers loops in detail;
here, we provide just enough information to allow you to write simple loops to
process a range of integers.

Suppose you want to implement the following sequence of statements,
which stores in int variable x the sum of the integers in the range 2..200. Here
is one way to do it:

78 Chapter 2 Methods

Java syntax: for-loop for processing a range of integers b..c

for (int i= b; i <= c; i= i + 1) {

Process i;

}

Purpose: To perform the sequence of statements “Process b; Process b+1;
...; Process c;”. Here, “Process i” can be any statement sequence that
refers to variable i. Also, b and c can be any integer expressions such that
b <= c + 1. If b = c + 1, then no integers are processed.

(1) x= 0;

x= x + 2 * 2;

x= x + 3 * 3;

x= x + 4 * 4;

…

x= x + 200 * 200;

200 lines is a lot to type. It would be nice to be able to paraphrase it like this:

For each number i in the range 2..200, add i*i to x.

Here is a for-loop (preceded by an initializing declaration of x) that does just that:

(2) int x= 0;

for (int i= 2; i <= 200; i= i + 1) {

x= x + i * i;

}

Variable i is called the loop counter.
The constituents of this loop are:
• The part of the loop within the parentheses:

- The initializing declaration of int variable i (initialized to 2);
- A semicolon;
- The loop-condition i <= 200. It can be any boolean expression;
- A semicolon;
- An assignment that adds 1 to loop counter i.

• The block after the parentheses (the opening brace { followed by the
sequence of statements followed by the closing brace }) is called the
repetend of the loop. Repetend means “the thing to be repeated”.

Program segment (2) performs exactly the same task as program segment (1)
above. It is just a shorthand version. Thus, sequence (2) executes x= 0; and then
executes the statement

x= x + i * i;

with i containing 2, then with i containing 3, and so on up to i containing 200.
You can (and should) put that code in a method and step through it in your

debugger.
As a second example, we write a loop that performs the following assign-

ment:

x= 1 * 1 - 2 * 2 + 3 * 3 - 4 * 4 + … + 21 * 21 - 22 * 22;

Here, the squares of odd integers are added and the squares of even integers are
subtracted, so this assignment is equivalent to:

2.3 Method bodies 79

x= 0;

x= x + 1 * 1;

x= x - 2 * 2;

...

x= x + 20 * 20;

x= x - 21 * 21;

x= x + 22 * 22;

Thus, we write the following loop (with initialization):

x= 0;

for (int k= 1; k <= 22; k= k + 1) {

if (k % 2 == 0) {

x= x - k * k;

} else {

x= x + k * k;

}

}

The general for-loop
We have shown the use of the for-loop to process a range of the integers.

That should be enough for now, and the following may be skipped. The general
for-loop is discussed in Chap. 7. However, for those who want to know a bit
more at this point, we discuss the for-loop further here.

The general form of the for-loop is

for (initialization ; condition ; increment) repetend

where

• The initialization is an assignment to the control variable, including,
optionally, its declaration.

• The condition is a boolean expression.
• The increment is generally an assignment (without a semicolon) to the

control variable.
• The repetend is any statement —usually a block.

Execution of the for-loop can be explained by the following flow chart

As an example, we write a loop (with initialization) that sums the even pos-
itive integers 2, 4, ... until the sum gets over 500.

condition repetendtrue

false

increment

initialization

80 Chapter 2 Methods

/* Set x to the sum of the first even integers 2, 4, 6, … such the sum
> 500 but the sum of one less even integer is ≤ 500. */

x= 0;

for (int k= 2; x <= 500; k= k + 2) {

x= x + k;

}

Here is another example. Assume n is at least 2. We write a loop segment
that sets m to the largest divisor of n that is smaller than n. We do not declare n
and m because we assume they are declared elsewhere. This loop is strange
because its repetend does nothing. Everything is done in the test of the condition
and the decrementing of m. Execute this loop by hand, using for n the value 5, so
that you see how it works.

/* Precondition: n >= 2. Store in m the largest integer that is
less than n and that divides n. */

for (m= n - 1; n % m != 0; m= m - 1} {

}

2.3.9 Self-review exercises for for-loops

After writing an exercise, test it on the computer. That is the best way to deter-
mine that your answer is correct. This usually requires you to calculate some of
the answers by hand for small values of the variables in question. Most, but not
all, of these loops require a statement that initializes a variable or two.

SR1. Write a for-loop to print the values in the range 4..24 on the Java console
(use statement System.out.println(…);).

SR2. Assume n ≥ 2. Write a loop to store this value in x:

1*(n - 1) + 2 * (n - 2) + 3 * (n - 3) + ... + (n - 1) * (n - (n - 1))

SR3. Given n ≥ 1, write a loop that stores in double variable v the sum:

1 / 1 + 1 / 2 + 1 / 3 + … + 1 / n

What happens to the sum as n gets large? What would happen if n < 1? (Try it!)

SR4. Given n ≥ 1, write a loop that stores in double variable v the sum:

1 / (1 * 1) + 1 / (2 * 2) + 1 / (3 * 3) + … + 1 / (n * n)

Once you have tested your loop to make sure it is right, try it for increasingly
large values of n. What value does the sum “converge” to as n gets larger?

SR5. Given n ≥ 2, write a loop to find the smallest integer that is greater than 1
and that divides n.

2.3 Method bodies 81

SR6. Given n ≥ 2, write a loop that sets boolean value b to the value of the sen-
tence “no integer in the range 2..(n - 1) divides n”. Make sure you test your
answer for various values of n.

SR7. Given n ≥ 1, write a loop that stores in x the sum of the first n values of
this sequence: 1, 2, -3, 4, 5, -6, 7, 8, -9, ….

2.4 Static versus non-static methods

The purpose of this section is to make clear, once more, the difference between
static and non-static components of a class. This material is placed here for com-
pleteness, so that everything about methods is in this one Chap. 2. We assume
that you know about class definitions and how to draw an instance (manila fold-
er) of a class.

Below is a class that contains a static method called staticMethod and a
static variable staticVar, as well as a non-static method called nonStatic-
Method and variable nonStaticVar:

public class C {

static int staticVar;

int nonStaticVar;

static void staticMethod(int x) {...}

void nonStaticMethod(int y) {...}

}

The distinction between static and non-static components is simple: static
components go directly into the file drawer for the class, while non-static com-
ponents appear in each and every instance of the class. Figure 2.6 illustrates this,
showing a filing cabinet with a drawer named C and, to its right, the contents of
the drawer. Static components staticVar and staticMethod are in the drawer.
The drawer also contains two instances of class C. (We would create them using
new-expressions.) Note that both instances contain a field nonStaticVar and a
method nonStaticMethod because these are defined to be non-static.

82 Chapter 2 Methods

Figure 2.6: The file drawer for class C

a2

C

nonStaticMethod(int)

a1

C

nonStaticMethod(int)

staticVar staticMethod(int)

Contents of C’s file drawer

nonStaticVar nonStaticVar

Any static variable or static method can be referenced using the name of the
class: C.staticVar and C.staticMethod(5).

The non-static components cannot be referenced without having a variable
that contains the name of an instance. Suppose a variable cVar contains the name
a1. Then a1’s two components can be referenced using cVar.nonStaticVar
and, say, cVar.nonStaticMethod(5).

The inside-out rule
We consider the question of what, exactly, can be referenced from the body

of method nonStaticMethod in instance a1. Almost all programming languages
have a general inside-out rule that can be used to answer this question.

Inside-out rule: Code in a construct can reference any of the
names that are declared or defined in that construct, together with
any names that appear in the enclosing construct(s) —unless the
name is declared twice, in which case the closer one prevails.

Naturally, there may be restrictions on this general inside-out rule. For
example, a local variable cannot be used in a statement that precedes its declara-
tion, and the use of some of Java’s access modifiers (public, protected, pri-
vate, and the default) may give further restrictions. But this general inside-out
rule is a good first step in understanding scope issues.

Here, we use the inside-out rule to determine what can be referenced from
a1.nonStaticMethod’s method body, based on Fig. 2.5:

1. The parameter and any local variables of a1.nonStaticMethod.
2. Field nonStaticVar and method nonStaticMethod itself because they

appear in an enclosing construct.
3. Static members staticVar and staticMethod because they appear in an

enclosing construct.

By the inside-out rule, method staticMethod can reference only its param-
eters and local variables, static variable staticVar, and staticMethod itself.
The inside-out rule does not let it reference components of instances a1 and a2.

We will apply the inside-out rule in other situations later on.

2.5 Stepwise refinement

You now have an understanding of the following kinds of statements: assignment
statements, conditional statements (if- and if-else-statements), method calls,
statements to read and write on the Java console, statements to read and display
values in fields of a JLiveWindow GUI, and statements to draw in a graphics
window. With this knowledge, we discuss the task of developing sequences of
Java statements to solve some task. In an ideal setting, we use what is called top-
down programming, or stepwise refinement.

See lesson 2-5
for a discussion
of stepwise
refinement.

2.5 Stepwise refinement 83

2.5.1 Stepwise refinement: making coffee

We introduce the notion of stepwise refinement with this problem:

Get coffee in the morning.

This statement says what to do; we want to replace it by a sequence of instruc-
tions, or statements, that say how to do it.

So how do we get coffee? If no one in the house has made coffee yet, we
have to make it. After that, we can pour coffee into a cup:

// Get coffee in the morning.
if (coffee not made) {

Make coffee.
}

Pour coffee into cup.

Note that we made the original task into a statement-comment, and we have
written its implementation underneath it. A statement-comment states what the
corresponding code does; it is often a big help when reading the code.

Note also that we use Java notation where appropriate. Some people prefer
to continue to write everything in stylized English —they call it pseudocode. We
prefer using programming notation whenever it is reasonable, so that the final
result is as close to being a program as possible.

We now work on refining the statement Make coffee. There are two choices:
real or instant, so we insert an if-else statement with those two choices:

// Get coffee in the morning.
if (coffee not made) {

// Make coffee.
if (real coffee desired) {

Brew coffee.
} else {

Make instant coffee.
}

}

Pour coffee into cup.

We now have two statements that could be refined further: Brew coffee and
Make instantcoffee. We can refine them in any order; they are independent. We
also have a choice of notation. If we continue to make each statement into a state-
ment-comment, the program becomes harder and harder to read. It exhibits too
much nested structure. Another choice is to introduce a method for a task and to
make an English statement into a procedure call. This allows the program to stay
short and simple. So let us create two methods:

This discussion
is also present-
ed in activity
2-5.1, using
synchronized
animation.

84 Chapter 2 Methods

// Get coffee in the morning
if (coffee not made) {

// Make coffee
if (real coffee desired) {

brewCoffee();

} else {

makeInstant();

}

}

Pour coffee into cup.

/** Brew coffee. */

public void brewCoffee() { }

/** Make instant coffee. */

public void makeInstant() { }

Notice that we write the specification and header of the new procedures, but we
leave their bodies empty. If one of them were a function, we would write a return
statement that produced some value of the right type, simply so that we could
compile the program, if we were writing and testing the program incrementally.

We can now work on either procedure; we decide to implement the body of
procedure brewCoffee. To brew coffee, we grind coffee, put the coffee in the fil-
ter, put the filter in the coffee maker, add water, and turn the coffee maker on:

/** Brew coffee */

public void brewCoffee() {

Grind coffee.
Put coffee in filter.
Put filter in coffee maker.
Add water.
Turn coffee maker on.

}

We stop the stepwise refinement of this program now, for the idea should be
clear. (Much more detail could be added —e.g. how do we boil water?)

2.5.2 A summary of stepwise refinement

We summarize the ideas of stepwise refinement, or top-down programming. The
development of the program consists of a series of steps.

1. Each step consists of replacing a statement that says what to do by a
sequence of one or more statements that describe how to do it. The
replacement is called the implementation, or refinement, of the statement.

2.5 Stepwise refinement 85

There are many choices for what the implementation can be:

2. The implementation can be a single statement (e.g. an assignment state-
ment or a conditional statement), a sequence of statements (some in
English and some in the programming language), and so forth.

There is a choice of notation to use:

3. We prefer to use a mixture of English and Java, moving closer and clos-
er to Java at each step, so that the final result is a Java program.

To this end:

4. We make heavy use of statement-comments.

5. We introduce methods and method calls in appropriate places, to keep the
program appearance simple.

It is important to realize that:

6. At each step, the program that has been written so far is correct. However,
some of the methods are not completely in Java. They contain English
statements.

One point that we have not discussed yet is the introduction of variables:

7. If a step of a top-down design introduces variables, this may cause
changes in several statements that have to refer to those variables. When
variables are introduced, it is important to write program comments that
describe the meanings of the variables.

Top-down design in other fields
We often think that what we are doing is new and exciting and all ours. This

is true also of top-down design when it was first discussed in programming in the
very early 1970s. However, top-down design is used in almost all fields, since it
is about the most logical way one can think of to develop anything. In fact, even
people in poetry have used it. Edgar Allen Poe, for example, wrote an essay on
how he developed the poem The Raven. He did not use the term top-down
design, but he sure used the concept! We urge you to put the ProgramLive CD in
your computer and watch a discussion of his essay.

2.5.3 Top-down development of a Java task

We look at stepwise refinement in a real programming situation. In this devel-
opment, we emphasize that we are not only doing stepwise refinement, we are
also using incremental programming and incremental testing. At every step, we
compile the program to make sure that it is syntactically correct and then do
whatever testing we can. This is far better than writing the whole program and

Activity 2-5.3
does this better,
using time and
synched anima-
tion. Watch it!

Activity 2-5.2
discusses Poe’s
amazing essay.
You have to
see it. You can
get the essay
and the poem
in footnotes.

86 Chapter 2 Methods

then trying to compile it and debug it. Waiting to compile until the program is
done may mean seeing dozens (literally) of syntactic error messages, which can
be overwhelming. Also, if we test only when we believe the program is finished,
we have no idea how to go about it. Finished programs are possibly thousands
of lines long. There will be too much to test all at once, too many places that
might have errors. Programming, commenting, compiling, and testing incre-
mentally lends a great deal of control —and will your preserve sanity at 3am the
day your assignment is due.

Anglicizing integers
We write a function that anglicizes integers, producing their English equiv-

alents. For example, for the integer 2001, our function produces the String "two
thousand one". We start with a specification and a function heading:

/** = English equivalent of n, for 0 < n < 1,000,000 */
public static String anglicize(int n)

For small numbers like 2 and 5, the English equivalent is easy to get; the
larger the number, the more work it takes to get its English equivalent. Because
of this we investigate large numbers, just to see what the problems are. The value
1000 is a point of differentiation: if n ≥ 1000 the result has the word "thousand"
in it; if n < 1000, it does not. Thus we can make an educated guess that the first
step of the body of anglicize is to make this differentiation:

/** = English equivalent of n, for 0 < n < 1,000,000 */
public static String anglicize(int n) {

if (n >= 1000) {

return anglicized n (for 1000 <= n < 1000000);

} else {

return anglicized n (for n <= 1000);

}

}

Refining the expression “anglicized n (for n > = 1000)”
Anglicizing an integer n in the range 1000 ≤ n < 1000000 requires breaking

it into the parts n / 1000 and n % 1000, anglicizing the two parts, and placing "
thousand " between them. For example, the English equivalent of 2121 is the
word for 2121 / 1000 followed by " thousand " followed by the anglicization
of 2121 % 1000. We can therefore write the then-part of the if-statement as

return (anglicized (n / 1000))
+ " thousand " + (anglicized (n % 1000))

This return statement calls for anglicizing two integers that are less than
1000, and the else-part also calls for anglicizing an integer that is less than 1000.
Therefore, in three places we have to do essentially the same task. It makes sense

2.5 Stepwise refinement 87

to write a function, say anglicizeHundreds, to perform this service. We show
this method, together with function anglicize but modified to call the new
function, in Fig. 2.7.

In Fig. 2.7, function anglicize is finished, and we should test it before pro-
ceeding. But how do we do that? Look at function anglicizeHundreds in Fig.
2.7. We have “stubbed it in”, by which we mean that we have fixed it to return
something that allows us to test function anglicize. It does not produce the
English words for n, but it does produce n. With this function, for the call angli-
cize(2024) we expect to get the value "2 thousand 24". Writing anglicize-
Hundreds in this fashion allows us to test function anglicize thoroughly before
proceeding.

In fact, if you test anglicize thoroughly, looking at “extreme” cases like n
= 999, n = 1000, n = 1001, n = 999999, you will find an error. Calling angli-
cize(1000) yields the value "1 thousand 0", and the 0 does not belong at the
end. The problem is that we wrote anglicizeHundreds to handle an integer n in
the range 0 < n < 1000, but it is called at least once with n = 0. We should change
the specification on anglicizeHundreds so that it accepts integers in the range
0..1000 and also state expressly (in the specification) that the English equiva-
lent of 0 is the empty String "".

In general, when programming and testing incrementally, compile often:
every few lines. Test just as often: as soon as you have written the specification
and header of a method, you can write a test for it. To facilitate testing, after writ-
ing the specification and header of a new method, write a body that is simple and
short but that allows you to test the parts of the program that call it.

The development of function anglicizeHundreds proceeds along similar
lines, so we do not show it. As you proceed, you will find the need for other func-
tions, e.g. a function teenName(n) that produces the English equivalent of n in
the range 10..19 and a function tensName(n) for n in the range 0..9.

A procedural approach
The above development focused on introducing more and more functions,

88 Chapter 2 Methods

/** = English equivalent of n, for 0 < n < 1,000,000 */
public static String anglicize(int n) {

if (n >= 1000)

{ return anglicizeHundreds(n / 1000); +

“ thousand “ + anglicizeHundreds(n % 1000);}

else { return anglicizeHundreds(n % 1000); }

}

/** = English equivalent of n, for 0 < n < 1,000 */
public static String anglicizeHundreds(int n)

{ return "" + n; }

Figure 2.7: Function anglicize with stubbed-in function anglicizeHundreds

all of which are short and almost trivial. It could be called a functional approach,
since there are no assignments and all the work is done using function calls (and
the if- and return statements). It is an effective manner of programming, and
entire programming languages (e.g. LISP and Scheme) have been built on it.

It is possible to use a procedural approach to solve this problem, ending up
with a program that has fewer functions and whose main function contains some
local variables that are being manipulated. We outline this approach here.

To set the stage, consider the following. When summing a list of values, we
would initialize a variable x (say) to 0 and then, one by one, add values to x.

In the problem of anglicizing n, we can imagine initializing a String vari-
able s to be the empty string "" and then, little by little, appending pieces of the
English equivalent to s. In doing this, we let an integer variable k tell us what
remains to be anglicized and appended to s.

Thus, we start out with this function:

/** = English equivalent of n, for 0 < n < 1,000,000 */
public static String anglicize(int n) {

// anglicize(n) = s + (the English equivalent of k)

int k= n; // the part of n left to translate
String s= ""; // the translation so far

Reduce k to 0, keeping the definition of s and k true;
return s;

}

We cannot overemphasize the importance of the definition of s and k as:

anglicize(n) = s + (the English equivalent of k)

In developing the method body, this definition will be the key. Note, for
example, how the statement before the return statement refers to this definition.
Assuming that the English equivalent of 0 is "", this is a correct description of
the task. We can refine the statement to reduce k to 0 as follows. The first step,
as it was in the functional approach, is to deal with the case when k ≥ 1000. We
refine anglicize to deal with this case:

/** = English equivalent of n, for 0 < n < 1,000,000 */
public static String anglicize(int n) {

// anglicize(n) = s + (the English equivalent of k)
int k= n; // the part of n left to translate
String s= ""; // the translation so far

// Handle the part that is ≥ 1000
if (k >= 1000) {

s= s + (English equivalent of k / 1000) + " thousand ";

k= k % 1000;

}

Activity 2-5.4.
The activity
gives the com-
plete develop-
ment, in a way
that is impossi-
ble on paper.

2.5 Stepwise refinement 89

// { k < 1000 }

Reduce k to 0, keeping the definition of s and k true;
return s;

}

In making this refinement, we have made progress. The statement to reduce
k can now assume that k < 1000. And, because of the way the statement to reduce
k is written, the program is still correct.

To test what we have done so far, we can replace the expression “English
equivalent of k / 1000” by (k / 1000). We should call the function several times,
perhaps with several boundary-case arguments —999999, 2000, 1001, 1000,
999, and 1— and make sure we get the expected answers back. We can then pro-
ceed to refine “English equivalent of k / 1000”.

We stop the development of this algorithm here because the main ideas have
been illustrated. Activity 2-5.4 on the CD explains the development far better
than can be done on paper.

Summary of the functional and procedural approaches
The functional approach emphasizes the use of function calls and de-empha-

sizes the use of local variables and assignment statements. The procedural
approach makes heavy use of variables and assignments and creates far fewer
functions. Which method you prefer is a matter of taste —and perhaps your pre-
vious programming experiences. If you prefer one over the other, make a con-
scious effort to practice the other so that you become adept at both approaches.
Then, you can use whichever is more preferable in any given situation.

2.6 Assertions in programs

A program usually contains comments to help the reader understand it. Some
comments explain what a program segment does. Other comments describe rela-
tionships between variables of the program. Here are two examples of the latter
type of comment:

// { x < y }

// { n is the number of values read in so far }

In this section, we study such comments. We begin by studying the notion of a
relation.

2.6.1 Relations about variables and values

A relation is simply a true-false statement about some variables. For example,
the relation 2 < 3 is a true statement, which happens not to mention any variables
at all, while the relation 2 = 3 is a false statement. The relation 2 < x concerns the
single variable x; we cannot tell whether it is true or false until we know what

Activity
1-6.1

Style Note
13.2, 13.2.2
assertions

90 Chapter 2 Methods

value x is associated with. If x contains 7, the relation is true; if x contains 2, the
relation is false. Here is a more complex relation concerning variables x, y, and
z: x = y + z.

The relations given so far were in mathematical notation. Java boolean
expressions are also relations, and relations can also be written in a natural lan-
guage. For example, here are some relations, using int variables x, y, z and
String variable s:

Variable s contains the character 'g'
The number of characters in s is 2*y
The temperature in Ithaca got below x on 1 January 1999
x is the number of values read in so far

The first relation concerns variable s. The second is a relation between variables
s and y. The third is a relation about variable x. The fourth could be about a vari-
able x in a particular Java program.

Note that the mathematical relation b = c is written in Java as b == c. When
discussing a program, we rely on mathematical notation; when we have to write
such a relation in Java, we have no recourse but to use the bad notation.

Simplifying relations
Some relations take this form:

(0) If Bill has black hair, blackHair is true.

What is often meant is this:

(1) If Bill has black hair, blackHair is true; else, blackHair is false.

But these two relations mean different things. The first does not say what value
blackHair has if Bill has red hair, while the second says that if Bill has red hair,
blackHair is false. Some might say that it is implicit in (0) that blackHair is
false if Bill has red hair, but mathematical convention disagrees.

There is a much simpler alternative for the second relation. It is shorter and
doesn't have any case analysis:

(2) blackHair = “Bill has black hair”

We have placed quotes around the sub-relation to make clear that it is a unit. The
quoted phrase is itself a relation; the equality says that blackHair is equal to the
value of that relation.

Let us show why relations (1) and (2) mean the same thing. In the case that
Bill does have black hair, (1) reduces to “blackHair is true”, while (2) reduces
to “blackHair = true”. These two are equivalent, so in the case that Bill has
black hair, (1) and (2) mean the same thing.

In the case that Bill does not have black hair, relation (1) reduces to
“blackHair is false”, while relation (2) reduces to “blackHair = false”. Again,
these two are equivalent, so in the case that Bill does not have black hair, (1) and

Activity
1-6.2

2.6 Assertions in programs 91

(2) mean the same thing.
Since (1) and (2) mean the same thing whether or not Bill has black hair,

they mean the same thing.
It takes time to get used to writing relations using form (2) instead of (1). Do

the self-help exercises at the end of this section to make the transition easier.

Examples
Here are more examples in which using the value of a relation provides a

better alternative. This statement stores the value of relation x < y in variable v:

if (x < y) { b= true; }

else { b= false; }

Instead of this if-statement, you can use this assignment:

b= x < y;

Now consider this specification of a function:

Return true if x is less than y and false otherwise.

Instead, write more simply:

Return x < y.

Here, the value of the relation x < y, which is written as a Java boolean expres-
sion, is to be returned.

One goal of the earlier part of this discussion is to make clear to you that
English is ambiguous. Computer programs should never be ambiguous: when
writing a specification of part of a program, be alert to any possible ambiguities
and do your best to remove them. Your teammates will love you for it.

2.6.2 Assertions

Below, the assignment is preceded and followed by a comment:

// {x > 0}

x= x + 1;

// {x > 1}

Each comment is a relation enclosed in braces { and }. We call such a relation
an assertion because we are asserting something about the state of execution
whenever the place where the comment appears is reached. Here is how to read
this code:

The code says nothing about what the statement does if x ≤ 0! It
deals only with x > 0. And, if x is greater than 0 initially, when the
statement terminates, x will be greater then 1.

Activity
1-6.3

A footnote on
lesson page 1-6
has a hilarious
example of
ambiguity.

92 Chapter 2 Methods

An assertion that precedes a statement is called a precondition of the state-
ment. An assertion that follows a statement is called a postcondition . Such a pre-
condition-statement-postcondition triple has the following meaning:

Execution of the statement begun with the precondition true is
guaranteed to terminate, and when it terminates, the postcondition
will be true.

When you see a relation enclosed in braces within a comment, you should
assume that the program author is asserting that that relation is true at that point.
The earlier code ensures that the relation is true; the later code relies on it being
true. In later sections, you will see hints from time to time about when and where
to use such assertions.

2.7 A model of execution

We now show you precisely how a method call is executed. Learning this mate-
rial, and being able to execute method calls yourself using our model of execu-
tion, will make writing programs much easier. You will know what is going on
inside the computer. Further, from time to time you will want to execute a
method call by hand in order to pinpoint a difficult-to-find error in your program.

This section requires knowledge of classes and our view of a class as a file
drawer of manila folders.

2.7.1 Frames for method calls

Whenever a method is called, some memory is set aside to contain information
related to the call: parameter values, the current statement being executed, and
so on. This memory is called the frame for the call. Figure 2.8 shows the format
of the frame that we use throughout this text. We discuss its components:

• Method-name. The method name appears in a box in the upper-left of
the frame.

Activity 4-3.3
gives a pictorial
description of
this complete
subsection.

Style Note
13.2, 13.2.2
indenting
assertions

2.7 A model of execution 93

Figure 2.8: Format of the frame for a method call

method-name: program-counter scope box

parametern
…

parameter2

parameter1

local variablen

…

local variable2

local variable1

• Program counter. The program counter is the number of the next state-
ment of the method body to execute. Initially, it is 1, and it is increment-
ed each time a statement is executed.

• Scope box. The scope box is used to find a variable or method that is ref-
erenced in the method body. Its value depends on what kind of method
this is:

for a static method: The name of the class in which the
method is defined.

for an instance method: The name of the object in which
the method resides.

for a constructor: The name of the object that was just created.

• Parameters. Each parameter of the method appears as a variable.
Parameters are drawn in the lower left of the frame for reasons that will
become clear later.

• Local variables. Each local variable of the method appears in the frame.

As an example, consider this class:

public class C {

public void meth(int p) {

double d;

…

}

}

Suppose we execute these statements:

C c= new C();

c.meth(5);

Execution of the first statement creates a new folder, stores its name in vari-
able c, and calls procedure c.meth. Figure 2.9 shows variable c, the folder, and
the frame for the method call c.meth just after the frame is created and the argu-
ment is stored in the parameter.

The call stack: the stack of frames for uncompleted method calls
A frame for a method call lasts as long as the method call is being executed.

When the call is finished, the frame is erased. If the method is called again later,
a new frame is created for it.

94 Chapter 2 Methods

Figure 2.9: The frame just after the argument has been assigned to parameter p

meth: 1 a1

p 5 y

a1

C

d meth(int)
c a1

This fact explains why local variables do not retain their values from one
call of a method to the next call of the same method: all the information about
the first call is in a frame, and the frame is erased when the call is completed.

Suppose a call of method m1 is being executed so that a frame for the call
exists. Suppose also that m1 calls m2. A frame for the call is created so that there
are now two frames. If m2 now calls a method m3, there will be three frames.

Of the three frames, the frame for m3 will be erased first, then the frame for
m2, and finally the frame for m1. This is because the call to m3 is the first to com-
plete. The last frame to be created is the first to be erased, and the first frame to
be created is the last to be erased.

The creation and destruction of frames follows a last-in-first-out, or LIFO
discipline, and the frames may be maintained on what is called a stack.

A stack is a list of items with two operations for changing the list: pushing
an item onto the stack (inserting a new item on its top) and popping an item from
the top (removing the topmost item).

As an example of a stack, consider the stack of trays in a cafeteria. An
employee will load a large number of trays onto the top of the stack; then, peo-
ple take them off the top one at a time. The last one added by the employee is the
first one removed by a customer.

We show how a stack is used to maintain the frames for a series of calls.
Consider class X of Fig. 2.10, which contains two static methods. Assume that a
call printLarger2(20, 6) is about to be executed and that the call appears in a
method m. At this point, the stack of frames is as shown in the first (leftmost) dia-
gram in Fig. 2.11. The second diagram in Fig. 2.11 shows the situation just after
the frame for the call to printLarger has been created and the arguments have
been assigned to the parameters.

The first statement in the body of printLarger2 is a call to procedure
printLarger, so a frame for this call is created and pushed onto the stack of
frames. The third diagram in Fig. 2.11 shows the situation after this frame has

2.7 A model of execution 95

public class X {

/** Print the larger of b and c */
public static void printLarger(int b, int c) {

if (b >= c) { System.out.println(b); }

else { System.out.println(c); }

}

/** Print larger of b and c and larger of b and c * c */
public static void printLarger2(int b, int c) {

printLarger(b, c);

printLarger(b, c * c);

}

}

Figure 2.10: Class X with two static procedures

been created and the arguments have been stored in the parameters. When this
call is completed, the frame is erased, and the situation is as shown in the third
diagram again, but with the program counter changed to 2 to indicate that the
statement 2 of the method body is to be executed next.

The active frame, the frame for the call, whose body is being executed, is
always at the top of the stack. The frames below the top one are inactive.

Placing argument values on the call stack
Above, we simply said that the argument values are assigned to the param-

eters. But how is this done? The arguments are evaluated before the frame for the
call is created, and the calling side, the method body where the call is made,
knows nothing about how big the frame for the call will be.

Here is how it works. The argument values are pushed onto the call stack,
simply as values. When the frame is created, the locations containing these val-
ues become the parameters. Thus, the call stack itself acts as the communication
device for argument values.

Figure 2.12 illustrates this “parameter passing” mechanism. It shows the call
stack just before the first call to procedure printLarger2, after the arguments
have been placed on the call stack, and then again after the frame has been cre-
ated. Notice that in the middle picture, the values are not yet named.

The return value of a function
The call stack is also used for communicating the value of a function to the

caller. When a statement return e; is executed, the active frame is popped from
the call stack and the value of e is pushed onto the call stack. At the place where
the function was called, the value is popped from the call stack and used as the
value of the function call.

96 Methods

Figure 2.11 The call stack: the stack of frames for uncompleted calls

m: 8 ?

call stack

m: 8 ?

call stack

printLarger2: 1 X

b 20

c 6

m: 8 ?

call stack

X

b 20

c 6

X

b 20

c 6

printLarger2: 1

printLarger: 1

active frame

active frame

active frame

Chapter 2

2.7.2 The steps in executing a method call

Now that we have shown the format of a frame for a method call, discussed the
call stack of frames, and discussed the communication of argument and result
values, we give the sequence of steps for executing a method call. It is wise to
memorize them and practice doing them on 5-10 small examples..

1. Evaluate the arguments of the call and push them onto the call stack.

2. Draw a frame for the call at the top of the call stack; the frame includes
the argument values at the top of the stack.

2(a) Fill in the name of the method and set the program counter to 1.

2(b) Fill in the scope box with the name of the entity in which the method
appears: the name of a folder for a non-static method or constructor, and
the name of the class for a static method.

2(c) Draw all local variables of the method body in the frame.

2(d) Label the argument values pushed onto the call stack in the first step
with the names of the corresponding parameters.

3. Execute the method body. Whenever a name is referenced, look in the
frame for it. If it is not there, look in the item given by the scope box of
the frame.

4. Erase the frame —pop it from the stack. If the method is a function and
the call is terminated by execution of a return statement return e;, push
the value of e onto the call stack.

2.8 Key concepts

• Method. A method is a recipe for getting something done or producing a result.
There are three kinds of methods in Java: procedure, function, and constructor.
Constructors have to do with initializing objects and are covered fully in Chaps.
3 and 4.

2.8 Key concepts 97

Figure 2.12 The call stack as a communication device for argument values

m: 8 ?

call stack

m: 8 ?

call stack

pLarger2: 1 X

b 20

c 6

active frame

active frame

m: 8 ?

call stack

active frame

20

6

• Parameter. A method may have parameters, which are variables that are
declared in the header of the method (within the parentheses and separated by
commas).

• Method body. A method body consists of a sequence of statements. It may also
contain declarations of local variables to simplify the body and make it more
efficient.

• Assertion. An assertion is a relation that we place as a comment before or after
a statement in a method body to assert that the relation is true at that point.
Assertions help programmers understand method bodies.

• Return statement in a function. Execution of a function body must terminate
by executing a statement return expression;; the value of the expression is the
result of the function call.

• Method call (or invocation). A method does nothing until is called, or invoked,
just as a cooking recipe just sits there until someone looks at it and follows the
instructions for cooking something. A procedure call is a statement; it is execut-
ed. A function call is an expression; it is evaluated. A constructor call is execut-
ed; it can appear only in a new-expression.

• Argument. Each method call can have arguments, which are expressions that
appear within the parentheses of a call (and separated by commas).

• Execution or evaluation of a method call. Executing or evaluating a call con-
sists of assigning the values of the arguments to the corresponding parameters
and then executing the body of the called method. The process of executing the
method body stops when there are no more statements to execute or until a return
statement is executed.

• Method specification. The specification of a method gives constraints (pre-
conditions) on the parameters of the method and explains precisely what it does
(or what value it produces). The specification should generally be written before
writing the method body. Someone wanting to write a call to the method should
be able to do so using only the specification and header of the method.

• Static versus non-static. Method definitions (except constructor definitions)
may have the modifier static. A static method is placed in the file drawer for
the class in which the method definition appears. A non-static method is called
an instance method because a copy of it is placed in each folder (or instance, or
object) of the class in which the method definition appears.

• Stepwise refinement or top-down programming. Stepwise refinement is an
idealized approach used to develop a method. The process starts with a specifi-
cation and refines it, step by step, into the final program.

• An execution model. Our model of execution of a method call is in terms of
the call stack of frames for calls that have been started but have not yet been-

98 Chapter 2 Methods

completed. Understanding this model is important for overall understanding, and
you should practice executing method calls yourself, using this model. If you
cannot do it, then it is likely that you do not understand some important details
of how a program is executed!

2.9 Self-review exercises

SR1. What is the difference between a static method and a non-static method?

SR2. A function call is an _________; a procedure call is a ____________.

SR3. Is the following a function call or a procedure call? meth(4, 3);

SR4. Is the following a function definition or a procedure definition?

public void method(int b) { … }

SR5. Define parameter: ___.

SR6. Define argument: ___.

SR7. To figure out what a procedure call meth(a1, a2) does, we _________.

SR8. The scope of a parameter is: __________________________.

SR9. The scope of a local variable is: __________________________.

SR10. A local variable keeps its value from one call of the method to the next
(true or false).

SR11. A function call must terminate with a statement whose syntax is: _____.

SR12. Draw a frame for the call C.meth(45, 6 + 2); on method meth of the
class shown below. Show the state just after the arguments have been assigned
to the parameters but before the method body is executed.

public class C {

public static void meth(int b, double c) {

String s;

...

}

}

Answers to Self-review exercises

SR1. A static method is placed in the file drawer for the class in which it is
defined. A nonstatic method appears in every instance of the class in which it is
defined.

2.9 Self-review exercises 99

SR2. A function call is an expression, so it has a value. A procedure call is a
statement, so it does not have a value.

SR3. It must be a procedure call because it ends in a semicolon.

SR4. The presence of keyword void tells you that it is a procedure.

SR5. A parameter is a variable that is declared within the parentheses of a
method definition (adjacent parameter declarations are separated by commas).

SR6. An argument is an expression that appears within the parentheses of a
method call (adjacent arguments are separated by commas).

SR7. To figure out what a call meth(a1, a2) does, copy the specification of the
method and replace all occurrences of the parameter names by the corresponding
arguments.

SR8. The scope of a parameter —i.e. where it can be referenced— is the method
body.

SR9. The scope of a local variable is the sequence of statements following its
declaration (until the end of the block in which the local variable is declared).

SR10. False.

SR11. return expression ;

SR12.

Exercises for Chapter 2

Each exercise below asks you to write a method and test it thoroughly. To do this,
write a single class Functions and place all the functions and procedures in this
class. Here is how you can test a method. Suppose you named the function of the
first exercise average. Then, after writing the function and compiling class
Functions, type this expression into DrJava’s Interactions Pane:

Functions.average(3, 5, 7)

Make sure you specify your methods, with comments that precede the method
definitions. If an exercise asks you to print values, label them suitably on the out-
put. For example, for the above function call, print average: 5.0.

E1. Write a function that returns the average of its three double arguments.

E2. Write a procedure that prints the average of its three double arguments on

meth: 1 C

b 45

c 8.0 s ?

100 Chapter 2 Methods

the Java console.

E3. Write a procedure that prints the sum, difference, and product of its two
double parameters.

E4. Write a function that returns "Hooray" if one of its three arguments is less
than 10 and returns “Booo” otherwise.

E5. Write a procedure that prints "Hooray" in the Java console if one of its
three arguments is less than 10 and prints "Booo" otherwise.

E6. Write a function that computes the area of a circle, given its radius r. The
formula for the area is πr2. You can get π using Math.PI.

E7. Write a procedure that prints the area of a circle, given its radius r. The for-
mula for the area is πr2. You can get π using Math.PI.

E8. Write a function that, given the number of gallons of gas a tank can hold and
the fuel efficiency of the car (miles per gallon), calculates how far the car can go
on one tank of gas.

E9. Write a procedure that, given the number of gallons of gas a tank can hold
and the fuel efficiency of the car (miles per gallon), prints how far the car can go
on one tank of gas.

E10. Write a procedure with three parameters that prints, on separate lines of the
Java console, the smallest parameter, then the middle one, and finally the largest.

E11. Write a function that converts its parameter from miles to kilometers. One
mile equals 1.60935 kilometers. Use type double.

E12. Write a procedure that converts its parameter from kilometers to miles and
prints the result. One mile equals 1.60935 kilometers. Use type double.

E13. Write a function that converts its parameter from pounds to kilograms. One
pound equals 0.45359237 kilograms. Use type double.

E14. Write a procedure that converts its parameter from pounds to kilograms
and prints the result. One pound equals 0.45359237 kilograms. Use type double.

E15. Write a function that is given as parameters the number of hours, minutes,
and seconds of a time on a particular day and yields the total number of seconds
that the time represents.

E16. Write a function that is given an integer in the range 0..999999 and returns
it as a String, with a comma separating the last three digits from the first ones.
Of course, include the comma only if the number is at least 1000. For example,
for argument 1546, the returned value is "1,546", and for argument 34, the
returned value is "34".

E17. Write a procedure that is given a dollar amount and prints out how many

Exercises for Chapter 2 101

quarters, dimes, nickels, and pennies it takes to make that amount. As many high-
er-valued coins as possible should be used. For example, for the amount $4.20,
the program should print on one line:

16 quarters, 2 dimes, 0 nickels, and 0 pennies

E18. Write a function that is given the number of seconds from midnight and
returns a String that contains the number of hours, minutes, and seconds from
midnight that it represents, suitably annotated. For example, called with argu-
ment 3675, it yields "1 hour 1 minute 15 seconds".

E19. Write a procedure that is given the number of seconds from midnight and
prints the number of hours, minutes, and seconds from midnight that it repre-
sents, suitably annotated. For example, called with argument 3675, this should
be printed: 1 hour 1 minute 15 seconds.

E20. Write a function that is given a time in terms of hours, minutes, and sec-
onds and returns the time in seconds only (as an integer). This is, in a sense, the
inverse of the previous exercise. For example, for 1 hour, 1 minute and 15 sec-
onds, return the integer 3676.

E21. Write a function that is given two times in military format and prints the
hours and minutes between the two times. You may assume that the second
parameter is the bigger of the two. For example, for the arguments (0352, 1900)
—that is 3:52AM and 7:00P— the result is: 15 hours 8 minutes. To make
things easier for you, try doing it by calling the function and procedure of the
previous two exercises.

E22. Write a function with an int parameter whose value is in the range 0..15
and that returns a String of length 4 that depicts its binary equivalent. For
example, for the number 7, the answer is the String "0111". Here is a hint. The
rightmost bit is 7%2, and the first three bits are the binary representation of 7/2.

E23. Write a procedure with an int parameter whose value is in the range 0..15
and that prints its binary equivalent. For example, for the number 7, this should
be printed: 0111. Here is a hint. The rightmost bit is 7%2, and the first three bits
are the binary representation of 7/2.

E24. In Sec. 0.1, near Fig. 0.2, we outlined the relationship between the decimal,
hexadecimal, octal, and binary numbers systems. Write a procedure that prints
the first 7 natural numbers (0, 1, 2, ..., 8) in all four systems. The first line
should contain 0 in all four systems; the second; 1 in all four systems; and so on.
For descriptions of static methods to help you do this exercise, turn to lesson
page 5-1 of the CD and click on the footnote for static methods of class Integer
(near activity 3).

E25. Do the same as for the previous exercise, but print the decimal values 21,
22, 23, 24, 25 in each of the four number systems.

102 Chapter 2 Methods

E26. Write a function that has three int parameters a, b, and c and returns the
value of the statement “a, b, c are the lengths of the sides of a triangle”. Three
such values form the lengths of the sides of a triangle if and only if a ≤ b + c, b
≤ c + a, and c ≤ a + b.

E27. Write a procedure that has three int parameters a, b, and c and returns one
of these strings: "equilateral" (meaning the sides have the same length),
"isosceles" (only two sides are equal), "triangle" (no sides equal, but they
form a triangle; see the previous exercise), or "not a triangle".

E28. Write a function that has as its parameters the lengths a, b, and c of a tri-
angle and returns the area of the triangle. Let s be 1/2 the perimeter of the tri-
angle. Then the area of the triangle is the square root of the expression s * (s -

a) * (s - b) * (s - c).

E29. Write a procedure that has as its parameters the (two) lengths of the sides
of a rectangle and prints: the area, the perimeter, and the length of the diagonal.

E30. Write a function with an int parameter n, with the precondition that
0≤n<1000, and returns the three digits of the number (with leading zeros if nec-
essary) with a blank between adjacent digits. For example, for argument 43, the
string "0 4 3" is returned.

E31. Write a function that is given the coordinates (x1, y1), (x2, y2) of two
points and returns the distance between them: the square root of (x1 - x2)

2 +

(y1 - y2)
2.

E32. Write a function that is given a letter in A..Z and returns the corresponding
digit on the telephone. Here is the translation: 2:ABC, 3:DEF, 4:GHI, 5:KHL,
6:MNO, 7:PRS, 8:TUV, and 9:WXY. For Z, return -2, and for Q, return 1.

E33. Turn to lesson page 2-1 of the CD ProgramLive and click the Project icon.
Do Project Dates, which asks you to write 5-6 functions that manipulate dates in
various ways.

E34. Write an if-statement that swaps (exchanges) the values of int variables b
and c, if necessary, so that the larger of the two is in c.

E35. Is it possible to write the body of procedure swap, shown below, so that it
is consistent with its specification? For example, if you write a call swap(d,
e);, is the larger of d and e guaranteed to be in e after the call? If you do not
fully understand, do not guess. Instead, write the procedure body and then exe-
cute the call to it by hand, using the steps given in Sec. 2.7.2, and see what hap-
pens. Explain your answer.

Exercises for Chapter 2 103

/** Swap the larger of b and c, if necessary, to get the larger in c. */

public static void swap(int b, int c) {

?

}

E36. Consider class C shown below. Draw a frame for the call meth(42, 43),
showing the state just after the arguments have been assigned to the parameters:

public class C {

public static void meth(int c, int d) { … }

}

E37. Consider the class C shown below.

public class C {

public static void meth(int c, int d) { … }

public static void m() { … }

}

Let the active frame be as shown below, and assume that this call appears in
method m: v.meth(45, 46);. Copy the active frame and folder a1 onto a piece
of paper and view the frame as the top frame in the call stack. Then execute the
method call, using the steps provided in Sect. 2.7.2 (omit the steps of executing
the method body and erasing the call.)

m: 6 C

v a1

a1

meth(int, int)

m()

C

active frame

104 Chapter 2 Methods

Chapter 3

Classes

OBJECTIVES

INTRODUCTION

Chapter 1 introduced classes. You saw the use of class JFrame and the creation
and use of at least one subclass of class JFrame. In this chapter, we provide an in-
depth discussion of classes, reviewing the concepts introduced in Chap. 1 and
introducing the rest of the concepts needed to understand and use classes.

3.1 Class definitions

Figure 3.1 contains the definition of a class Employee. There are a few new things
in this class, which we explain below.

An instance of this class represents a person in a company, with a name, the
year they were hired, and a starting salary of $50,000. In a real program, an
instance would contain more information —the person’s address, social security
number, and so on. We maintain only three pieces of information in an instance
in order to keep the class manageable in this discussion.

A similar class
is discussed in
activity 3-6.1

• Discuss the class definition as a template for its instances (folders).
• Discuss information hiding for fields, but show when public fields are useful.
• Show how the inside-out rule is used in Java.
• Define the constructor and show how it is used.
• Compare testing of folder names with testing of their contents.
• Show when to make a method or field static.
• Discuss object-oriented design.
• Look at a model of execution.

106 Chapter 3 Classes

/** An instance contains a person's name, year hired, and salary */

public class Employee {

private String name; // Employee's name

private int start; // Year hired

private double salary= 50000; // Salary

/** Constructor: a person with name n, year hired d, salary 50,000 */
public Employee(String n, int d) {

name= n;

start= d;

}

/** = name of this Employee */
public String getName()

{ return name; }

/** Set the name of this Employee to n */
public void setName(String n)

{ name= n; }

/** = year this Employee was hired */
public int getStart()

{ return start; }

/** Set the year this Employee was hired to y */
public void setStart(int y)

{ start= y; }

/** = Employee's total compensation (here, the salary) */
public double getCompensation()

{ return salary; }

/** Change this Employee’s salary to d */
public void changeSalary(double d)

{ salary= d; }

/** = String representation of this Employee */
public String toString() {

return getName() + ", year " + getStart() +

", salary " + salary;

}

}

Figure 3.1: Class Employee

Note that the class definition does not include the clause “extends …”. This
class does not explicitly extend another; it stands alone, by itself. The subclasses
of JFrame that we wrote in Chap. 1 extended JFrame.

A class definition defines the contents of manila folders that are placed in its
file drawer. Such a manila folder is called an instance of the class, or an object
of the class. An instance of class Employee appears in Fig. 3.2, along with the
file drawer in which the instance appears. Each instance of a class contains the
following components:

1. The fields, or instance variables, of the class, which are the variables
defined in it that do not have modifier static.

2. The instance methods of the class, which are the methods defined in it
that do not have modifier static.

Initial values of fields
If a field is declared without an initializing assignment, the field has a

default value, which depends on its type. Here are the default values:

byte: (byte) 0 float: 0.0F

short: (short) 0 double: 0.0D

int: 0 boolean: false

long: 0L char: null character, '\u0000'
class-type: null

Activity
3-4.2

Style Note
13.1, 13.1.1:
field name

conventions

3.1 Class definitions 107

Java syntax: Class definition
public class class-name {

declarations of methods and fields
}

Purpose: To define a new file drawer, named class-name, and describe
the contents of its manila folders (instances, or objects, of the class).

Figure 3.2: An instance of class Employee

a0

Griesname

1997start

50,000salary

getName()
setName(String)
getStart()
setStart(int)
getCompensation()
changeSalary(double)
toString()
Employee(String, int)

Employee

Style Note
13.1, 13.1.3:
class name
conventions

Placement of classes
A class named C (say) is placed in its own file, named C.java. Thus, class

Employee is placed in file Employee.java. All the files that you use in a pro-
gram should be placed in the same directory on your hard drive. It is a good prac-
tice to have a different directory for each program. Get in the habit of creating a
new directory for the .java files whenever you start on a new Java project.

Importing predefined classes
A class C may need to reference classes that are predefined in packages (see

Chap. 11) that come with the Java system. To be able to reference any class that
is defined in a package, say package java.util, place the following import
statement before the class definition in file C.java:

import java.util.*;

To import just one class of the package, say Date, use this import statement:

import java.util.Date;

Any number of import statements may be placed before the class definition
in the file. The order in which they occur does not matter, and a class may be
imported several times.

3.1.1 The principal of information hiding

The principle of information hiding is:

Principal of information hiding. Do not give someone access to
information that they do not need to know.

In some situations, information hiding is a bad principal. For example, some
governments use it, with their own definition of “need”, to suppress information
and keep people in the dark, leading to corruption and even suppression of their
people. To protect against this, some countries have passed “freedom of infor-
mation” acts, which attempt to limit what can be kept from the public.

In programming, the principal of information hiding can be useful. Limiting
what can be seen in a particular place can help the reader understand parts of the
program better, and it can help make later changes in the program easier.

Java has several mechanisms to help in hiding information. The one that
concerns us here is the use of access modifiers public or private in declarations
of components of a class. The presence of public means that the component
may be accessed from any part of the program that has access to the class.
Modifier private restricts access to the class in which the declaration appears.
In Fig. 3.1, the methods are public. The three fields are private, which is indicat-
ed in the instance of Employee in Fig. 3.2 by graying out the fields.

Generally, we make fields of a class private so that a user of an instance can-
not access them directly. Instead, the user accesses using methods of the class,

Activity
3-6.4, 3-6.5

Activity
1-2.3

108 Chapter 3 Classes

which are usually public. Making the fields private has two advantages:

1. We can change the implementation of the class without requiring the user
to make changes. For example, suppose we decide to maintain the name
of an employee in two fields, the employee’s last name and first name,
but still present the full name as a String to the user. We can do this by
changing the fields and then changing the methods appropriately. The
user would not know the difference.

2. We have control over how the field is used. For example, we can provide
only the ability to read or get the value of the field, but not to change it.

In general, it is the behavior of a class —as presented by its public meth-
ods— that is most important. Who cares how names and salaries are stored in
fields? That is not important to a user of the class. What is important is how they
can be obtained and how the salaries can be changed.

Later, we will see situations in which it makes sense to make fields public.
Also, a method should be private if it is used only within the class and the user
does not need to know of its existence.

Getter and setter methods
Access to the value of a private field can be granted using a getter method,

which is a method that simply returns its value. Examples of getter methods in
class Employee are methods getName, getStart, and getCompensation.

A good naming convention for a getter method is the name of the field, cap-
italized and preceded by “get”. We used this convention for two getter methods.
We did not use it for field salary because of the way method getCompensation
is used later in Chap. 4. The term getSalary will be too narrow for its use.

In the same way, we write a setter method for a field, in order to change its
value. Examples of setter methods in Employee are setName and setStart. The
parameter of the method contains the value that is to be stored in the field.

Here is a good convention for naming a setter method: use the name of the
field, capitalized and preceded by “set”.

3.1.2 The inside-out rule

Keyword this used in a method refers to the instance in which the method
appears; to reference a component named c (say) of that instance, we use the
notation this.c. In Chap. 1, we made extensive use of keyword this when
referring to components of the class within the class. For example, in Chap. 1,
we would have written method toString of class Employee like this:

/** = a representation of this instance */

public String toString()

{ return this.getName() + ", this.year " + this.getStart();}

However, most programming languages, including Java, use a general

Style Note
13.1, 13.1.2

method names

3.1 Class definitions 109

inside-out rule, which in this instance makes the use of this unnecessary. Here
is the general rule:

General inside-out rule: In a subpart (e.g. a method) of a con-
struct (e.g. a class), all the names that are declared or that can be
referenced in the construct can be referenced in the subpart,
unless the subpart redeclares them.

Here is the inside-out rule as it pertains to method bodies in Java:

Inside-out rule for non-static method bodies: In a method body,
all the components of the class in which the method is defined can
be referenced, unless they are redeclared (e.g. as parameters).

This inside-out rule in Java lets us write method toString more simply as:

/** = a representation of this instance */

public String toString() {

return getName() + ", year " + getStart();

}

because getName, year, and getStart are declared in class Employee.
We illustrate a case where the use of this is necessary. Consider writing

method setName using name for the parameter instead of n:

/** Set the name of this Employee to name */
public void setName(String name)

{ this.name= name; }

Since the parameter is named name, name cannot be used directly to refer to
field name. The assignment name= name; assigns to the parameter and not to the
field. To assign to the field, write the assignment as: this.name= name;

Some programmers use the convention that in a setter method, the parame-
ter name is the same as the field being set. When using this convention, the use
of keyword this is needed to assign to the field.

3.1.3 Declaration of constructors

Chapter 2 contains an extensive treatment of procedures and functions. Here, we
discuss the third kind of method, the constructor. There is one constructor in
class Employee, which we give here:

/** Constructor: a person with name n, year hired d, salary 50,000 */
public Employee(String n, int d) {

name= n;

start= d;

}

Activity
3-5.2

110 Chapter 3 Classes

A constructor is called when an instance is first created —we see how this
is done in Sec. 3.2. The purpose of a constructor is to initialize the fields of the
newly created instance. That is all. In the constructor shown above, field name is
initialized to parameter n and field start to parameter d. Field salary need not
be assigned because the initialization appears in its declaration.

How does one distinguish a constructor from a procedure or function? A pro-
cedure has keyword void just before the procedure name in its declaration. A
function has the return type in this place. A constructor has neither. Furthermore,
the constructor name must be the same as the class in which it is declared.

Note carefully the specification of the constructor. In this text, all construc-
tor specifications have the form “Constructor: an instance with ...”, where we
state exactly what value each field is initialized to, mentioning the parameters
where necessary. Please use this convention for your constructor specifications.

The default constructor
If no constructor is declared in a class C (say), Java declares this one for you

(but it does not appear explicitly in the class definition):

/** Constructor: an instance with initialization as given in
the field declarations */

public C() { }

Thus, if you can give the initial values of the fields in their declarations,
there is no need to write a constructor.

If you do define a constructor in a class, the default constructor is not placed
in the class by Java. So, if you want two constructors, one of which is the default,
you have to explicitly define the constructor shown above in the class.

The use of several constructors
The constructor in class Employee has two parameters, the name and hire

date. Most people for whom an instance will be created will be new hires, so the
year will be the year in which the instance is created. To save users effort, we can
write a second constructor that has only the name of the person, with the hire date
being the current year. Such a constructor is presented below.

Style Note
13.3.1

spec for a
constructor

3.1 Class definitions 111

Java syntax: constructor declaration
public class-name (parameter-declarations) {

sequence of statements and declarations
}

Purpose: To define a constructor in class class-name, declare its parame-
ters, and give the sequence of statements to execute when the constructor is
called. Each parameter declaration has the form type variable, and adjacent
parameter declarations are separated by commas. The purpose of a con-
structor call is to initialize the fields of a newly created folder.

/** Constructor: person with name n, hired this year, salary 50,000 */
public Employee(String n) {

name= n;

start= (new Date()).getYear() + 1900;

}

(The year is obtained using an instance of class Date of package java.util, so
we need to import classes of this package. First, an instance of Date is created;
then its function getYear is called, which yields the number of years assuming
1900 as year 0; finally 1900 is added to this value.)

Writing more than one constructor takes time and effort, but it will save time
and effort in using the class and is well worth it. Having several constructors can
make the user’s task easier.

Calling or invoking one constructor from another
Class Employee of Fig. 3.1 contains a constructor that initializes fields name

and start. In the body of the second constructor, shown above, instead of ini-
tializing the fields directly, we would like to call the first constructor. At first
glance, it would seem that we could replace the two statements in the body of the
above function with one constructor call:

Employee(n, (new Date()).getYear() + 1900);

However, this is not the syntax that Java uses to call one constructor from anoth-
er. The syntax uses keyword this instead of the constructor name:

this(n, (new Date()).getYear() + 1900);

Note that there is no period following keyword this.
Thus, we write the second constructor as follows:

/** Constructor: person with name n, hired this year,
salary 50,000 */

public Employee(String n) {

this(n, (new Date()).getYear() + 1900);

}

Only the first statement of a constructor body can call another constructor.

3.1.4 Function toString

A Java convention is to define instance function toString() in each class, as we
did in class Employee of Fig. 3.1. The purpose of function toString is to create
a String description of the instance in which the function appears. Generally,
though not always, the result will contain the values of all the fields of the
instance. In class Employee, toString yields a String that contains the name
and year of hire, but not the salary.

Activity
3-7.2

Activity
3-5.4

112 Chapter 3 Classes

Suppose you have an instance v of some class and method toString is
defined in the class. To find out what the instance contains, simply type v into the
DrJava Interactions pane; automatically, the value of the call v.toString() will
be printed.

Here is another way in which toString is useful. Execution of

System.out.println(v.toString());

will print the description of instance v in the Java console. As another example,
to assign a description of instance v to String variable s, use the assignment:

s= v.toString();

Implicit calls to toString
In certain situations, given the name v of a class instance, Java will auto-

matically call method toString of the instance. For example, one can give v as
the argument of a println or print statement, and the effect is as if the argument
was v.toString():

System.out.println(v);

Consider attempting to assign the description of instance v to String s

using this assignment:

s= b; // Syntactically incorrect

Because of Java’s typing rules for assignment, this statement is syntactically
incorrect. Instead, write the assignment like this:

s= "" + b;

Since one operand of + is a String, the other operand is converted to a String
using its method toString; then the catenation of "" with the converted value is
assigned to s.

Make the toString description fit the problem
The form of the description produced by function toString should be in

terms of the area with which the class is concerned. For example, consider a class
Point whose instances are points in the xy plane. Then, toString should pro-
duce conventional notation for points, e.g. "(5,3)".

As another example, suppose that a class BowlingFrame contains the results
of one frame of the American game of bowling. Function toString could pro-
duce the notation used for keeping score in that game, e.g. "X" for a strike, "8/"
for a spare on which the first ball knocked down 8 pins, and "81" for a frame in
which the first ball knocked down 8 pins and the second 1.

Take the time to write function toString so that it produces the description
in the notation of the problem domain. It will make future testing and debugging
easier.

Activity
3-7.4

Activity 3-7.3
shows how a
call to toString
is evaluated,
step by step.

3.1 Class definitions 113

3.1.5 Self-review exercises

SR1. A definition of a class Circle goes in a file named _______________.

SR2. A class definition describes the contents of _____________________ .

SR3. The syntax of a class definition is: ____________________________.

SR4. To import the classes of package javax.swing, place this statement
before the class definition: _____________________________.

SR5. State the principle of information hiding. What keyword is used to hide
fields or instance methods of a class?

SR6. State the general inside-out rule in programming languages. How does it
apply to method bodies?

SR7. A getter method is to used to ________________________.

SR8. A constructor is called to _______________________________.

SR9. How do you write the constructor call C(7, 60); from another construc-
tor in class C, and where do you put the call?

SR10. The purpose of function toString in a class C is to ______________.

SR11. Obtain file Employee.java from the bottom of lesson page 3-3 of
ProgramLive. Place it in a folder by itself. Open it in DrJava and compile it. In
the Interactions pane, create an instance or two of the class and experiment with
calls to its methods.

Type the second constructor for it, the one just before Sec. 3.1.4. Compile
and experiment with creating instances using calls to this constructor.

SR12 Write a class that represents a point in the (x,y) plane. What fields does
it have? Should they be private or public? What methods will it have? Type your
class into DrJava and test all the methods.

Answer to Self-review exercises

SR1. Circle.java.

SR2. The folders (instances, or objects) of the class.

SR3. public class class-name {

declarations of variables and methods
}

SR4. Put this statement before the class definition: import javax.swing.*;

SR5. Make available to someone only what they need to know. Keyword pri-
vate hides fields or instance methods of a class.

114 Chapter 3 Classes

SR6. The general inside-out rule in programming languages says that a subpart
of a construct can reference anything that is declared in or is accessible in the
construct, unless the subpart redeclared it. A method body can reference names
declared in the class in which the method is declared, unless the name is rede-
clared as a parameter of the method.

SR7. Retrieve a value from the instance.

SR8. Initialize fields of a newly created instance.

SR9. Make this(7, 60); the first statement of the constructor.

SR10. Yield a description of the fields of the object in which toString appears.

SR11. We do not answer this one here.

SR12. Class Coordinate will have two private fields, the x and y coordinates of
a point. There will be a constructor with two parameters to initialize the fields,
as well as getter and setter methods for them. Finally, there will be a toString
function, which will produce a String that looks like this (depending on the
coordinates): "(5,2)".

3.2 Using classes

3.2.1 The class as a type

In the next subsection 3.2.2, we show how a program can create new folders (or
instances) of class Employee and other classes. Generally, when a folder is cre-
ated, its name (the label on the folder) is placed in a variable, just as an integer
is placed in an int variable. To declare the variable that can contain the name of
a folder, we use the name of the class as a type.

For example, the first declaration below declares x to be a variable that can
contain an int, while the second declaration declares v to be a variable that can
contain the name of an instance of class Employee (or, to abbreviate, the name
of an Employee):

int x;

Employee v;

Suppose we assigned 4 to x and the name of the object in Fig. 3.2 to v (we
show how to do this in the next subsection). Then, the variables look like this:

It is important to realize that the name of the instance, and not the instance
itself, is placed in v. The consequences of this are discussed in Sec. 3.2.4.

From the above, we see that class Employee can be viewed as a type. Since
it is also a class, we sometimes talk of Employee as a class-type. And just as we
say that x is of type int, we say that v is of type or class-type Employee.

x 4 v a0

Activity
3-3.4

3.2 Using classes 115

The values of type Employee are the names of folders of class Employee.
When a variable of type Employee is first declared, it contains the value

null, which means that it does not contain the name of a folder.

3.2.2 The new-expression

The new-expression is used to create new folders, or instances, of a class.
Consider this expression, where class Employee is given in Fig. 3.1:

new Employee("Gries", 1966)

Its evaluation is done in three steps:

1. Create a new folder of class Employee and place it in Employee’s file
drawer. Its fields are initialized according to the declarations of the fields.
The first part of the new-expression, “new Employee” tells us to do this.

2. Execute the constructor call Employee("Gries", 1966); where the con-
structor Employee that is called is the one in the newly created folder
whose parameter types match the argument types of the call.

3. Yield as the value of the call the name of the new folder.

We evaluate the new-expression new Employee("Gries", 1966). Step 1 is
to create a new folder of class Employee; the folder is shown in the left of Fig.
3.3. The fields have initial values as given by their declarations in the class —
default values are used if an initializing declaration is not used.

Step 2 is to execute the constructor call Employee("Gries", 1966). We do
this here by stepping over the call. According to the specification of the con-
structor, the first argument is stored in field name and the second in field start.
We show the result on the right side of Fig. 3.3.

Step 3 is to yield the name a0 as the result of the expression evaluation.
Here is some terminology. The manilla folder created by evaluating a new-

expression is called an instance of the class, or an object of the class. Evaluating
a new-expression instantiates the class by creating an instance of it.

Placement of a new-expression
The main use of the new-expression is on the righthand side of an assign-

ment statement, for example, as in:

Activities
3-4.1, 3-5.2

116 Chapter 3 Classes

Java syntax: New-expression
new class-name (arguments)

Purpose. Create a folder (instance, object).

Evaluation. Create a folder of class class-name, exe-
cute the constructor call class-name(arguments), and
yield the name of the new folder as the value.

Employee e= new Employee("Hall", 2000);

If evaluation of the new-expression in this assignment created the folder that is
on the right side of Fig. 3.3, the value a0 would be stored in e.

But an Employee new-expression can appear in many other places —wher-
ever an expression of type Employee can appear. For example, the following
statement creates an Employee and prints its description using its toString
function; thereafter, the newly created folder cannot be referenced anymore:

System.out.println(new Employee("Gries", 1966));

This example may not seem so useful. Here is a more useful one. We would
like to obtain the current year (or month, day, minute, etc.). We can do this by
constructing a new instance of class Date (in package java.util), calling its
function getYear, and adding 1900 to the result:

int year= (new Date()).getYear() + 1900;

In this example, a desired value is retrieved from the new Date folder, and the
Date folder is never used again.

In this text, you will come across other cases where a new-expression is used
in places other than the righthand side of an assignment. Get used to the fact that
the new-expression is just that, a new kind of expression.

3.2 Using classes 117

Figure 3.3: Evaluating a new-expression

a0

Employee

Griesname

1966start

50000.salary

getName()
setName(String)
getStart()
setStart(int)
getCompensation()
addToSalary(double)
toString()
Employee()

a0

Employee

0start

50000.salary

getName()
setName(String)
getStart()
setStart(int)
getCompensation()
addToSalary(double)
toString()
Employee()

Java syntax: Referencing a field
expr . field-name

Example: (new Date()).x

Purpose: To reference field field-
name of the folder whose name is
given by the value of expression expr.

Java syntax: Calling an instance method
expr . method-name (arguments)

Example: (new Date()).getyear()

Purpose: To call instance method method-name
that appears in the folder whose name is given by
the value of expression expr. If the method is a pro-
cedure, the call needs a semicolon.

nullname

3.2.3 Referencing components

You already know how to reference a component, but we repeat the information
here for completeness. Suppose v contains the name of some folder of class
Employee. Then we call a method like getStart that is in the folder using:

v.setStart(arguments);

Of course, the method must be public in order to do this outside the class.
Actually, v can be any expression whose value is a (suitable) folder; it need

not be a variable. For example, above, we assigned the current year to variable
year using this assignment statement:

int year= (new Date()).getYear() + 1900;

Here, new Date() creates a folder of class Date and yields the folder’s name a3
(say); so we have a3.getYear(). This calls function getYear of folder a3.

In the same way, if expression e yields the name of a folder and the folder
has a field name, then e.name refers to that field.

3.2.4 Equality testing and aliasing

Consider the following two statements:

Employee b= new Employee("Gries", 1966);

Employee c= new Employee("Gries", 1966);

These two statements store in variables b and c the names of two different fold-
ers, whose contents happens to be the same. The folders and variables after the
assignments are shown in Fig. 3.4.

In this situation, the relation

Lesson page 3-
7 discusses this
topic.

Activities
3-3.2, 3-6.1

118 Chapter 3 Classes

Figure 3.4: Variables b and c and the folders whose names they contain

a5

Employee

Griesname

1966start

50000.salary

getName()
setName(String)
getStart()
setStart(int)
getCompensation()
addToSalary(double)
toString()
Employee()

a4

Employee

Griesname

1966start

50000.salary

getName()
setName(String)
getStart()
setStart(int)
getCompensation()
addToSalary(double)
toString()
Employee()

b a4 c a5

b == c

evaluates to false. The contents of variables b and c are being compared, not the
contents of the folders whose names they contain, and they contain different
names.

To be able to compare the contents of the folders named by b and c, we
define a boolean function equals in class Employee:

/** = "This Employee and e contain the same fields" */
public boolean equals(Employee e) {

return this.name == e.name

&& this.start == e.start

&& this.salary == e.salary;

}

Later, in Sec. 4.3.2, when we have defined the subclass and class Object, we will
revisit function equals and write it slightly differently.

Given the situation in Fig. 3.4, suppose we execute the assignment

b= c;

Then, b and c both contain the name a5:

and we can get the name of the person using b.getName() and c.getName() —
we have two ways of referencing the components. This is called aliasing because
variables b and c refer to the same object.

In the real world, aliasing often has negative connotations —crooks mas-
querade under several aliases to stay ahead of the law.

In object-oriented programming, aliasing is a natural occurrence. In terms of
our model of file drawers and folders, it makes sense. Barbara (variable b), the
person in charge of salaries for a company, might change a5’s salary. Charles
(variable c), an administrative aide, might later change the name of the person in
folder a5 to fix a mistake.

You, the programmer, must be aware of this phenomenon of aliasing in order
to design and develop correct programs.

3.2.5 Making fields public

Consider class Coordinates of Fig. 3.5, whose sole purpose is to aggregate the
x-coordinate and y-coordinate of a point (x, y) in the plane. It has two fields,
which are public, and only two methods, a constructor and function toString.

This class exists not so much for its behavior but simply as a way to collect
two values in one place —in an instance. In fact, we could remove the two meth-
ods and still find the class useful. The class (or its instances) is similar to the lan-
guage Pascal’s record and the language C’s struct.

b a5 c a5

3.2 Using classes 119

There are times when we want a class simply to aggregate a few values, and
we should not hesitate to construct a class with public fields if that suits the pur-
pose. However, more usually, a class is developed for the behavior of its
instances: the fields are private, and all interaction with an instance is through
public methods. Classes URL, JFrame, Date, and Employee are examples of this;
they represent the more popular case.

In Fig. 3.6, we show a use of class Coordinates. Field cent of class Circle
contains the center of a circle. There are four methods, which give the usual
properties of a circle: center, radius, diameter, and area. We have not used the
convention for getter-method names in naming these methods. In this case, the
more conventional names seem more appropriate. We leave the writing of a
toString method for this class to you.

3.2.6 Self-review exercises

SR1. Write a declaration (with no initialization) of two variables: one of class-
type String and another of class-type Employee.

SR2. Write down the three steps in evaluating a new-expression (it is impor-
tant for future work that you memorize these three steps).

SR3. Below is a new-expression. Evaluate it. In executing the constructor call,
step over the call, i.e. execute it as an indivisible action based on what the spec-
ification of the constructor says. See Fig.3.1. What is the value of the call?

new Employee("Clinton", 1996)

SR4. Figure 3.6 contains a class Circle. What is wrong with this expression?

120 Chapter 3 Classes

/** An instance is a point (x, y) in the plane */

public class Coordinates {

/** The point is (x, y) */

public int x;

public int y;

/** Constructor: an instance for point (x,y) */
public Coordinates(int x, int y) {

this.x= x; this.y= y;

}

/** = the String "(x, y)" */

public String toString() {

return "(" + x + ", " + y + ")";

}

}

Figure 3.5: Class Coordinates

new Circle()

SR5. Figure 3.5. contains a class Coordinates. Evaluate the expression shown
below. When executing the constructor call or evaluating the call to function
String, step over the calls, i.e. do the call as an indivisible action in terms of the
specification of the method.

(new Coordinates(5, 6)).toString()

SR6. Consider these three assignment statements:

Coordinates x= new Coordinates(5, 6);

Coordinates y= new Coordinates(5, 6);

Coordinates z= y;

What is the value of the expression x == y? Of x == z? Of y == z? Of x == x?

Answers to Self-review exercises

SR1. String s; Employee emp;

SR2. (1) create a folder of class C, (2) execute the constructor call C(args);,
and (3) yield the name of the new folder as the value.

3.2 Using classes 121

/** An instance is a circle with a center and a radius */
public class Circle {

/** The circle has center cent and radius rad */

public Coordinates center;

public int radius;

/** Constructor: a circle with center (x, y) and radius r */
public Circle (int x, int y, int r) {

center= new Coordinates(x, y);

radius= r;

}

/** = the center of the circle */

public Coordinates center() { return center; }

/** = the radius of the circle */

public int radius() { return radius; }

/** = the diameter of this circle */

public int diameter() { return 2*radius; }

/** = the area of this circle */

public double area() { return Math.PI * radius * radius; }

}

Figure 3.6: Class Circle

SR3. The folder looks like the one in Fig. 3.1, except that name has value
"Clinton" and start has value 1996. The value of the call is the name that you
placed in the tab of the folder.

SR4. A constructor without parameters is not defined in class Circle. Two
arguments are needed within the parentheses.

SR5. Evaluation creates this folder and yields the name a9:

SR6. false, false, true, true.

3.3 Static components

As you know, a component (variable or method) that is declared in a class may
have the modifier static. Such a component is called a static component, or
class component. During execution of a program, a static component is in the file
drawer for the class in which it is defined. There is only one copy of the class
component —it does not appear in instances of the class. One references a static
variable v (or method m) in a class C using C.v (or C.m(…)).

We now discuss the reasons for making a component static.

3.3.1 Static variables

A variable that is declared with modifier static within a class is called a static
variable, or class variable. Such a variable does not appear in each manila fold-
er of the class; instead, there is only one copy of it, and it goes directly into the
class file-drawer. We discuss two uses of class variables.

Constants
A constant is a variable that is declared with modifier final. Such a decla-

ration must be an initializing declaration, and no other assignments to it are
allowed. The variable cannot be changed. An example is variable MAX_VALUE in
class Integer:

public static final int MAX_VALUE= 2147483647;

The purpose of such a constant is to provide a mnemonic name for a value, mak-
ing it easier for programmers to reference a value. Another example is the con-
stant Math.PI (i.e. the constant PI in class Math), which is the closest double

Style Note
13.1, 13.1.1

naming
constants

Lesson pages
3-1 and 3-2
discuss static
methods. Page
3-2 looks at
class Math.

a9

Coordinates(int, int)

toString()

Coordinates

x 5 y 6

122 Chapter 3 Classes

approximation to the value of π, the ratio of the circumference of a circle to its
diameter.

A constant is usually made static because there is no need for more than one
copy of it. Placing one copy of the variable in each instance of a class would
waste space. Making it static means that there is exactly one copy, in the file
drawer of the class. Further, it can be referenced even if no instance of the class
has been created. Just use the class name followed by a period followed by the
constant name, e.g. Math.PI.

Providing communication among instances of a class
A bank account generally has an account number. The bank gives each

account a different, unique, number —it would reek havoc on the system to have
two different accounts with the same number.

Consider designing a class BankAccount, each instance of which maintains
one bank account, with an owner, account number, and balance. We need a way
to assign a new account number to each instance as it is created. To do this, we
use a static variable nextAccountNumber, which always contains the next
account number to generate. We show how the account numbers are created in
Fig. 3.7, which contains part of class BankAccount.

3.3 Static components 123

/** An instance is a bank account */
public class BankAccount {

/** The next account number to assign —numbers 1000..nextAccountNumber-1

have already been assigned */

private static int nextAccountNumber= 1000;

private String person; // The account owner
private int number; // The account number
private double balance; // The balance in the account

/** Constructor: an account for person p with initial balance b */

public BankAccount(String p, double b) {

person= p

balance= b;

number= nextAccountNumber;

nextAccountNumber= nextAccountNumber + 1;

}

/** = the bank account number */

public int getNumber() { return number; }

/** = the number of accounts created thus far */

public static int numberOfAccounts()

{ return nextAccountNumber - 1000; }

}
Figure 3.7: Assigning bank account numbers (only three methods are shown)

Static variable nextAccountNumber is initialized to 1000, the first account
number to use. Look at the constructor. It assigns nextAccountNumber to field
number and increments nextAccountNumber, thus keeping its definition true.

It would be extremely difficult to achieve our goal of having unique account
numbers without using a static field (or at least a static method somewhere, or
adding extra parameters to the constructor), for then there would be no way to
provide communication among the instances of a class. And some form of com-
munication is needed, for how else could we ensure that different accounts have
different account numbers? Using a static variable, the necessary communication
become easy.

In summary, if some form of communication is needed between instances of
a class, consider using static variables.

3.3.2 Static methods

In Fig. 3.8, we show class BankAccount’s file drawer, with one folder of the
class as well as the two static components. What can be referenced from, say, the
body of function getNumber in that folder? According to the inside-out rule (see
Sec. 3.1.2), fields person, number, and balance as well as the static components
can be referenced. Indeed, function getNumber references field number. A static
method is also called a class method.

Now look at function numberOfAccounts. Its method body does not refer-
ence any components of instance a1, so there is no need to place it in the
instance. Therefore, it is made static, so that there is only one copy of it, in the
file drawer. Note that the inside-out rule allows the method body to reference
static variable nextAccountNumber, which it does.

In summary, if a method body does not reference any instance components
of the class in which it is defined, make the method static.

3.4 Object-oriented design

We discuss the design of a program using classes. It is an idealized design in
which everything is done in a certain order, and correctly. In reality, a design may
require much redoing of earlier steps when something is realized later on. Rarely
can it be done in a completely idealized fashion. Nevertheless, we should strive
for the ideal, for it can reduce the time and effort to complete the program.

3.4.1 The basic idea of OO design

Object-oriented design is the process of designing a program by focusing on the
objects that the program will manipulate and designing the classes that describe
the objects. We do this by focusing on the objects of the problem domain —the
domain for which the program is being written.

Objects are things, so begin by listing objects of the program domain:

Activity
3-8.1

Activity 3-1.3
contains anoth-
er example of
static methods,
dealing with
temperature
conversion.

Style Note
13.1, 13.1.1

naming static
variables

124 Chapter 3 Classes

1. Write noun phrases to describe the objects to be manipulated.

For example, if a program is going to manipulate student records, here are
some of the objects that we might consider:

student name,
student address,
student major (e.g. English or Computer Science),
student’s advisor,
grades in courses,
complete student record (it contains just about all the other objects).

As another example, a program that manipulates graphical shapes and places
them in a window on your monitor will deal with things like the position of a
shape on the monitor, the kind of shape, the color of a shape, and the angle at
which the shape is drawn.

Not all the objects listed will require new class definitions. For example, a
student’s name may be implemented as a String, which is already a class. Other
objects might appear at first to be useful in the real world but may not be neces-
sary for the program that is being written.

With the list of possible objects, we can:

2. Decide on classes and write their specifications.

The instances of these classes will be the objects.
Recall that the specification of a class describes the behavior of instances of

the class, meaning that it specifies all the non-private methods of the class. It will
also specify the non-private variables. This is done by picturing in your mind the
behavior of the object —in terms of both the real world and how you expect it to
perform in the program. In this sense, the verbs that come to mind end up being
the method names. For example, we might have to change a student’s address
(method changeAddress), or insert a grade (insertGrade), or send a message
to the student’s advisor (mailAdvisor).

3.4 Object-oriented design 125

Figure 3.8: BankAccount’s file drawer, with one instance

a1

BankAccount(String, double){…}

getNumber(){…}

BankAccount
person

number

balance

nextAccountNumberfile
drawer

for
class

BankAccount

numberOfAccounts() {… }

Next, we can:

3. Implement the classes.

Implement one class at a time. As you implement a class, as much as possible,
test its methods as soon as they are written. Do not wait until the end.
Intermediate testing may give you better ideas and may cause you to change your
mind about the design. Of course, intermediate testing is best done if the classes
are implemented in a certain order —we will see this when we look at a design
in the next several sections.

Finally,

4. Put it together.

Putting it all together in one program will be most easily done if the program
parts have been incorporated one at a time into the final program as they were
developed and tested.

This is a short discussion of object-oriented design. But, it should give you
a bit of insight into the design process. We now give an example of object-ori-
ented design.

3.4.2 An example of OO design

We design and implement a program that will give a child practice in reading a
clock. The program starts by displaying a window that asks the player (a child)
for their name (see Fig. 3.9). After the player enters their name and hits the OK
button, a second window asks for the level at which they want to play —an inte-
ger in the range 1..4.

After the player types a level number and hits the OK button, a clock ap-
pears, along with text giving the player’s name, level, and score thus far. Also, a

Lesson page 3-
8 provides a
better intro to
the game.
Close this book
and watch it!

126 Chapter 3 Classes

Figure 3.9: The clock and one of the dialog windows

window appears, asking the player for the hours shown on the clock. If the play-
er types the wrong number, a window appears that says so, and the player is
asked to hit one of the buttons. If the player types the right number, a window
appears that says so and the score is incremented. When the player hits the OK
button, the time on the clock is changed to a new random time and the player is
again asked to type in the number of hours. The game continues in this fashion.

We explain the level.

Level 1. The player is asked only for hours, and the clock always shows 0
minutes. At the other levels, the player is asked for the hours and then for
the minutes.

Level 2. The clock shows 0, 15, 30, or 45 minutes.
Level 3. The clock shows minutes that are a multiple of 5.
Level 4. The clock shows any minute in the range 0..59.

The level is incremented whenever the score reaches a multiple of 5 and the level
is still less than 4.

This ends the description of the game.

Identifying the objects of the game
We write down noun phrases that identify objects of the problem domain.

We can think of a clock, which has a time. The clock has a face, a minute hand,
and an hour hand.

There is a player. The player has a name, has a score, and is playing at a par-
ticular level.

The text that appears under the clock is an object; we call it the player sta-
tus. And the whole window that contains the clock and status is an object; we call
it the clock window.

The game itself is an object; we call it the clock game.

3.4 Object-oriented design 127

/** An instance is a clock with a time, painted on a canvas */

public class Clock extends Canvas {

/** Constructor: a clock with time t */
public Clock(Time t) { }

/** = the time on the clock */

public Time getTime()

{ return null; }

/** Set the clock time to t */
public void setTime(Time t) { }

/** Paint the clock using g */

public void paint(Graphics g) { }

}

Figure 3.10: Specification of class Clock

The dialog boxes that are displayed when the player is asked for information
are also objects, but of a class that already exists in the GUI package that we will
be using.

We list these objects:

clock, time, face, minute hand, hour hand
player, name, score, level
status, clock window, clock game, dialog box

There may be more objects to think of, but this is certainly enough to begin
with. We move on to the class-design phase. We start by designing the clock.

Specifying class Clock
It is common to draw pictures like the clock on a Canvas, using methods of

class Graphics, where class Canvas occurs in package java.awt. Therefore,
view the clock as an extension of class Canvas.

A clock always has a time, so it makes sense to have a constructor that is
given a time to display on the clock. We will design class Time in a moment.

It will be necessary to obtain and to change the clock time, so we provide
getter and setter methods for the time.

We also need a method paint, as usual, that will draw on the Canvas. We
collect these methods into the specification given in Fig. 3.10.

Note one thing in Fig. 3.10. We have added a return statement in method
getTime, which returns null. Although Fig. 3.10 contains only a specification,
it will soon be turned into the class itself. Before we write the method bodies, the
class should compile; it should be syntactically legal. And functions must have
return statements. We write such return statements in all our specifications.

128 Chapter 3 Classes

/** An instance is a time (hours and minutes) */

public class Time {

/** Constructor: instance with h hours, m minutes */
public Time(int h, int m) { }

/** = the hours of this time */

public int getHours() { return 0; }

/** = the minutes of this time */

public int getMinutes() { return 0; }

/** = a representation " hours:minutes " of this Time */

public String toString() { return null; }

/** = this Time equals t */
public boolean equals(Time t) { return false; }

}

Figure 3.11: Specification of class Time

Specifying class Time
We now develop the specification of class Time (see Fig. 3.11). An instance

of Time contains a time on the clock. Such a time consists of an hour and a
minute, so the constructor of class Time will have parameters for them.

The user needs getter methods for the hour and minute. Should we also pro-
vide setter methods? We decide against this; if a new time is needed, it can be
obtained by creating a new instance of class Time. Thus, instances of class Time
are immutable objects; they cannot be changed.

What other methods are needed? The time on the clock is probably going to
be displayed somewhere, especially if the player gets it wrong. So we include
method toString, which will provide a printable version of the time.

Looking back, we wonder whether class Clock should have a method
toString. We decide that this is unnecessary. It would yield a String represen-
tation of the time on the clock, and this can already be obtained using get-
Time().toString().

When we developed this program, we found out during the implementation
phase that it would be useful to have one more method in class Time. We dis-
covered the need to compare the time on the clock with the player’s guess at the
time, so we added a method equals to class Time.

We have designed class Clock and class Time, which is used within Clock.
Looking at the other objects that have to do with the clock (the face and hands),
we decide that these objects will not have to be described by classes because they
will be simply drawn on the canvas of the clock. Thus, we have finished one
major portion of the design process.

Note that we did not discuss the fields we would need in classes Clock and
Time. The fields will be private, so they have nothing to do with the specifica-
tions of the classes, which deal with the users’ view of the classes.

Specifying class ClockWindow
The diagram in the left of Fig. 3.9 contains a clock and the game status. This

window is what we have called object clockWindow. We now design class
ClockWindow to describe how this window behaves (see Fig. 3.12). To have an
instance appear as a window on your monitor, we make ClockWindow a subclass
of class JFrame.

The constructor for ClockWindow will be given a clock and the String
value that is to be placed in the status initially. The constructor’s task is to add
the clock and status to the window and to ensure that the window is visible.

What else do we need? The time on the clock may be changed, but the clock
is given to the constructor. So the method that creates the ClockWindow has
access to the clock, and we see no need for getter/setter methods. The status will
also be changed, and we need to provide a setter method for it because otherwise
it would be unchangeable. That is about all we need in class ClockWindow.

3.4 Object-oriented design 129

The implementation of class Time
A time consists of a number of hours and a number of minutes, and the eas-

iest and most obvious thing to do is to introduce private instance variables to con-
tain these two values. Based on the specification of the methods, their bodies are
easy to write. See Fig. 3.13. Often, developing the class specification takes more
time than the implementation.

The implementation of class Clock
Finally, we implement class Clock (see Fig. 3.14). The constructor has a

Time parameter, which gives the time on the clock, so we introduce a private
instance variable time to contain this Time. The constructor saves the parameter
in field time. It then does something that you probably would not have known
how to do: it sets the background color to a kind of pink and sets the size of the
Canvas that contains the clock. For this purpose, we introduce two constants to
contain the height and width.

The getter method for field time is easy to write. The setter method is also,
but it has the additional task of repainting the window because the time has been
changed.

The last method to implement is paint. We do not describe the stepwise
refinement of this method because our focus here is on object-oriented design,
not procedural design. Incidentally, this is the most difficult part of the whole
implementation. Take a look at the final program if you wish.

Implementation of class ClockWindow
We do not discuss the implementation of class ClockWindow because it con-

tains too many things with which you are not familiar. Take a look at it, if you
wish; you can get it from the CD.

Testing Clock, Time, and ClockWindow
You can use the following lines in DrJava to begin testing these three class-

es. The first line creates a new Time and stores its name in t; the second line cre-
ates a new Clock and stores it in c; and the third line creates a new ClockWindow
and stores it in g. Change the time on the first line and run again to look at a dif-
ferent clock.

130 Chapter 3 Classes

/** An instance is a window with the clock and status */

public class ClockWindow extends JFrame {

/** Constructor: window with clock c and a status with value s */
public ClockWindow(Clock c, String s) { }

/** Set the value of the status to s */
public void setStatus(String s) { }

}

Figure 3.12: Specification of class ClockWindow

Time t= new Time(5, 32);

Clock c= new Clock(t);

ClockWindow g= new ClockWindow(c, " test status ");

Designing the player and the game
Earlier, we identified these objects:

clock, time, face, minute hand, hour hand
player, name, score, level
label, clock window, clock game, input dialog box

We have taken care of those that have to do with the clock, time, and clock win-
dow, and we now design classes for those dealing with the player and the game
as a whole.

3.4 Object-oriented design 131

/** An instance is a time (hours and minutes) */

public class Time {

/** The number of hours in the time. */

private int hours;

/** The number of minutes in the time. */

private int minutes;

/** Constructor: an instance with h hours, m minutes */
public Time(int h, int m) {

hours= h;

minutes= m;

}

/** = the hours of this time */

public int getHours()

{ return hours; }

/** = the minutes of this time */

public int getMinutes()

{ return minutes; }

/** = a representation " hours:minutes " of this Time */
public String toString()

{ return hours + ":" + minutes; }

/** = this Time equals t */
public boolean equals(Time t)

{ return this.hours == t.hours && this.minutes == t.minutes; }

}

Figure 3.13: Class Time

Class Player
We begin with class Player, whose final specification is in Fig. 3.15.

According to the specification of the game, a player has a name, has a score, and
is playing at some level of difficulty. Based on this, we decide that the construc-
tor should have parameters for the player's name and the playing level, with the
score initially set to 0.

It should not be necessary for a different part of the program to change these
three values, but it will be necessary to access them, so we provide getter meth-
ods.

During the game, the score will be incremented —which may cause a
change in the level— so we provide a method to increment the score.

Finally, we write function toString. Actually, we did not have toString
initially but found out later that it would be useful. Almost always, function
toString turns out to be useful, so put one in every class.

132 Chapter 3 Classes

/** An instance is the Canvas that contains the clock and status */

public class Clock extends Canvas {

/** The time on the clock. */

private Time time;

/** The width and height of the canvas */

private static final int WIDTH= 250;

private static final int HEIGHT= 250;

/** Constructor: a clock with time t */

public Clock(Time t) {

time= t;

setBackground(new Color(255, 235, 222));

setSize(WIDTH, HEIGHT);

}

/** = the time on the clock */

public Time getTime()

{ return time;}

/** Set the time to t and repaint the Canvas */
public void setTime(Time t)

{ time= t; repaint(); }

public void paint(Graphics g) {

Draw the face —circle and tick marks;
Draw the hands

}

}

Figure 3.14: Class Clock

Designing class ClockGame
An instance of class ClockGame will have methods that allow a game to be

played. This will involve a player, a clock, and a clock window that will contain
the clock and a label that displays details of the game.

The constructor of the clock game will create the player, clock, and clock
window. It will initialize the player by asking the player for their name and the
level at which they want to play.

The constructor constructs the game, getting it ready to play, but it does not
play it. For this, we write a method playGame. This completes the design of the
specification of ClockGame. See Fig. 3.16 for the specification.

Concluding remarks
This completes the design of the specification of Player and ClockGame.

The only object that we have not dealt with is the dialog box that opens when the
player is asked to give some input. You can see how this object is created when
you read the implementation of ClockGame.

We do not provide the implementations of Player and ClockGame here —
our emphasis is more on designing the classes than on providing their imple-
mentation. The classes themselves can be obtained from the ProgramLive CD.

Lesson page 3-
8 tells you how
to get the pro-
gram from the
CD.

3.4 Object-oriented design 133

/** An instance is a player practicing clock-reading. */

public class Player {

/** Constructor: player with name s, score 0, and playing level lev */

public Player(String s, int lev) { }

/** = the name of the player */

public String getName()

{ return null; }

/** = the current score of the game */

public String getScore()

{ return null; }

/** = the level at which the player is playing */

public String getLevel()

{ return null; }

/** Increment the score (and level if necessary) */

public void incrementScore() { ... }

/** = a representation of the player */

public String toString()

{ return null; }

}

Figure 3.15: Specification of class Player

3.5 The model of execution

In Sec. 2.7, we discussed execution of method calls, defining the format of a
frame for a method call, introducing the call stack of frames for method calls that
have not yet completed, and giving the sequence of instructions for executing a
method call. You will best understand method calls if you can execute them your-
self, by hand. Only then will you have complete understanding of how calls
work. Further, with this ability, you should have little difficulty understanding
recursive calls later on (see Chap. 15).

We repeat the set of instructions for executing a method call:

1. Evaluate the arguments of the call and push them onto the call stack.

2. Draw a frame for the call at the top of the call stack; the frame includes
the argument values at the top of the stack. This frame will become the
new active frame.

2(a) Fill in the name of the method and set the program counter to 1.
2(b) Fill in the scope box with the name of the entity in which the method
appears: the name of a folder for a non-static method or constructor, and
the name of the class for a static method.
2(c) Draw the local variables of the method body in the frame.

2(d) Label the argument values pushed onto the call stack in the first step
with the names of the corresponding parameters.

3. Execute the method body. When referencing a name, look in the (new
active) frame for it. If it is not there, look in the item given by the scope
box of the frame.

4. Erase the frame —pop it from the stack. If the method is a function and
the call is terminated by execution of a return statement return e;, push
the value of e onto the call stack.

We now illustrate execution of an assignment statement that includes evalu-
ation of a new-expression, including following the steps in executing its con-
structor call. We assume that the following statement occurs as the first statement

The scope box
of a frame is
defined in
Activity 5.1.
Activities 3-7.1
and 3-7.3 use
synched anima-
tion to provide
much better
illustrations of
executing
method calls.

134 Chapter 3 Classes

/** An instance has a method to play the clock game. */

public class ClockGame {

/** Constructor: player with fields initialized and a clock window with a clock and a label.
The player information is obtained using a dialog window. The default time is 0:00. */

public ClockGame() { ... }

/** Play until the player terminates the game */

public void playGame() { ... }

}

Figure 3.16: Specification of class ClockGame

of static method m in a class C and that class Coordinates is given in Fig. 3.5:

Coordinates d= new Coordinates(5, 6 + 2);

Part (a) of Fig. 3.17 shows the call stack with the frame for the call to method m
at its top. The program counter is 1 because statement 1 is to be executed. The
scope box of the frame contains the name C of the class, since m is static. The
frame contains variable d.

Step 1 in evaluating the new-expression is to create a folder of class
Coordinates. It is shown below. The fields have the default value 0 since their
declarations do not have initializing assignments. We have arbitrarily labeled the
folder a9. This folder goes in file drawer for class Coordinates.

Step 2 in evaluating the new-expression is to execute the constructor call
Coordinates(5, 6+2), where the method is in folder a9:

1. Step 1 is to evaluate the arguments and push their values on the call stack.
This result of this step is down in part (b) of Fig. 3.17.

2. Step 2 is to create the frame for the call to Coordinates. We have done
this in part (c) of Fig. 3.17. The scope box contains the name of the fold-
er in which the called constructor appears. There are no local variables,
so none are drawn. The argument values that were pushed onto the stack
become the parameters. The result of this step is shown in Fig. 3.17(d).

3. Step 3 is to execute the body of the constructor. This consists of execut-
ing the assignments to x and y. Where are variables x and y? Since they
are not in the frame for the call, the scope box is used to determine where
they are —in folder a9. Thus, folder a9 is changed to look as shown
below, and the frame for the call is changed as in Fig. 3.17(e) —the pro-
gram counter has been changed to 3.

4. Step 4 of executing the constructor call is to erase the frame for the call.
Execution of the call is finished. The state of affairs is as shown in Fig.
3.17(f).

a9

Coordinates(int, int)

toString()

Coordinates

x 5 y 8

a9

Coordinates(int, int)

toString()

Coordinates

x 0 y 0

3.5 The model of execution 135

136 Chapter 3 Classes

Step 3 in evaluating the new-expression is to yield the name of the newly
created folder, a9, as the value of the expression.

After evaluation of the new-expression, its value, a9, is stored in variable d.
Since the assignment statement is finished, the program counter is incremented.
The result is shown in Fig. 3.17(g); we also placed folder a9 in Fig. 3.17(g).

m: 1 C

d null

Coordinates: 1 a9

5

8

m: 1 C

d null

5

8

m: 1 C

d null

(a) before the call (b) after pushing argument values (c) frame is complete

Figure 3.17: Steps in executing the constructor call

Coordinates: 1 a9

x 5

y 8

m: 1 C

d null

m: 1 C

d null

(d) fixing the parameters (e) after execution of method body (f) frame is erased

Coordinates: 3 a9

x 5

y 8

m: 1 C

d null

a9

Coordinates(int, int)

toString()

Coordinates

x 5 y 8

m: 2 C

d a9

(g) d has been assigned

3.6 Key concepts

• Class. A class is a file drawer that contains two kinds of items: manila folders
of the class and components that were declared with modifier static.

• Instances and objects. The terms folder, instance, and object are used inter-
changeably.

• Components: fields and methods. The components of an object of a class are
instance variables (or fields) and instance methods —variables and methods that
are defined in the class without modifier static. Thus, the class definition is a
template for the folders of the class.

• Procedures, functions, constructors. There are three kinds of method. A call
to a function produces a value. A call to a procedure performs some task but does
not produce a value. A call to a constructor initializes the fields of a newly cre-
ated object. A method call can have arguments, which are expressions.

• New-expression. Evaluation of a new-expression new class-name(arguments)
creates a new object of class class-name, initializes its fields by executing the
call class-name(arguments), and yields the name of the new object as its value.

• Calling a constructor. A constructor is called either in a new-expression or as
the first statement of another constructor of the class; in the latter case, keyword
this is used instead of the class name.

• Class as a type. A class name may be used as a type, and a variable declared
with that type can contain the name of a folder of that type.

• Null. The value null represents the absence of the name of an instance. If a
variable u contains null, attempting to access a component using u.component-
name is an error.

• Information hiding. The principle of information hiding says to hide informa-
tion from those who do not need it. We usually hide fields of an object by declar-
ing them to be private, although in rare cases, making them public is pre-
ferred.

• Inside-out rule. The inside-out rule, used in most programming languages,
says that a program part can reference items declared or referenceable in sur-
rounding constructs, unless a redeclaration hides them.

• toString. Put a function toString in (almost) every class to provide a descrip-
tion of the object in which the function appears.

• Equality testing. A relation c==b tests whether the names (of objects) that are
in c and b are the same, not whether the contents of the objects are the same.
Write a function equals to test whether the contents of the objects are the same.

• Static items. Make a variable static if it is a constant or if only one copy is

3.6 Key concepts 137

138 Chapter 3 Classes

needed and it provides communication between objects of the class. Make a
method static if the only variables it references are its parameters and local vari-
ables and the only methods of the class that it calls are static methods.

• Object-oriented design. OO design lays emphasis on making a list of the
nouns of the problem domain; they represent objects, and classes are designed
whose instances are those objects. Verbs tend to be models for the methods of the
classes.

Exercises for Chapter 3

E1. Names come in several forms, given by these examples: (1) David Gries (2)
David J. Gries (3) David Joseph Gries (4) Gries, David (5) Gries, David J. and
(6) Gries, David Joseph. Design a class that will allow someone to create an
instance with a first name, middle name, and last name and retrieve any of these
six forms from it. You might allow a person to omit the middle name if there is
none. Here are two different schemes. In one scheme, there are six methods —
to retrieve a name in each of the six formats. In the other scheme, there is method
for indicating which of the six formats is desired and only one method for
retrieving a name —using the desired form. Which of these schemes do you pre-
fer? Why? If you use the second alternative, use constants to name the six for-
mats.

E2. Implement and test the class of the previous exercise. How many test cases
do you need to ensure that it is correct? If you need help with handling strings,
see Sec. 5.2.

E3. Design a class an instance of which is a pair of dice. Each die has six faces,
with the numbers in 1, 2, 3, 4, 5, 6 on them. At all times, one face is face-up.
What methods will you have? You will probably want one for “rolling” the dice,
so that new faces become face-up in a random manner.

E4. Implement and test the class designed in the previous exercise. In imple-
menting a roll of the dice, you may want to look at class Random (see Sec. 5.6).

E5. Design a class whose instances are standard playing cards. Each card has a
suit (one of spades, hearts, clubs, and diamonds) and a value (one of 2, 3, 4, 5,
6, 7, 8, 9, 10, Jack, Queen, King, Ace). Think carefully about what methods you
incorporate in the class. Also, think about having constants to denote the suits
and values. See Sec. 3.3.1.

E6. Implement and test the class of the previous exercise.

E7. Design a class that represents a list of cards (of playing cards; see exercise
E5). The whole deck of 52 cards could be an instance of this class. However, a
player’s “hand” —say, in poker, 5 cards, could be an instance as well. In design-
ing the methods, think of a card game that you have played and figure out what

you do with the deck of cards or a hand when playing the game.

E8. Implement and test the class of the previous exercise. You may want to hold
a bunch of cards in a Vector (see Sec. 5.3).

E9. Students in a class have received three scores on homeworks so far.
Depending on the average of these three scores, they are either passing, margin-
al, or failing. Passing is an average in the range 70..100, marginal is an average
in the range 55..69, and failing is an average in the range 0..54. Design a class
whose instances represent students. A student has a name and three scores. It
should be possible to retrieve the name, the scores, and the average. It should
also be possible to see whether a student is passing, marginal, or failing. For the
latter method, introduce three constants, PASSING, MARGINAL, and FAIL-
ING, and have the function return one of them. Read Sec. 3.3.1.

E10. Implement and test the class of the previous exercise.

E11. Design a class each instance of which represents a library book, which has
a title, author, and call number.

E12. Implement and test the class of the previous exercise.

E13. Design a class each instance of which represents an entry in an address
book. It has a person’s name, address (as a String), phone number, email
address, and birthday (which could be of class Date).

E14. Implement and test the class of the previous exercise.

E15. Design a class each instance of which is an address book. Use the class of
exercise E13 for the entries in the address book. Given an address book, one
should be able to look for an entry by name, phone number, or address. It should
be possible to delete an entry, change part of an entry, etc.

E16. Implement and test the class of the previous exercise. You may want to
maintain the collection of entries in the address book using class Vector (see
Sec. 5.3).

E17. Write a test of a class whose instances represent a time of day, i.e. it main-
tains the hour and minute. The user should be able to state whether the time
should be seen as a 12-hour or 24-hour mechanism. In the first case, method
toString method should produce a time that looks like 10:30AM or 03:16PM; in
the second case, 10:30 or 15:16. Note that the hour is always two digits. The
user should be able to retrieve and set the hour, and minute.

E18. Design a class like that of exercise E17 except that it also maintains the
time zone. Include just a few time zones, like GMT (Greenwich Mean Time)
EST (Eastern Standard Time) and EDT (Eastern Daylight Time).

E19. Implement and test the class of the previous exercise. How many test cases
do you need to ensure that it is correct? If you need help with handling Strings,

Exercises for Chapter 3 139

see Sec. 5.2.

E20. What happens if the name of a class does not match the name of the file in
which it is placed? Try it.

E21. Can you put two public classes in the same file? Try it, and explain what
happens.

140 Chapter 3 Classes

Chapter 4

Subclasses

OBJECTIVES

INTRODUCTION

In Fig. 3.1, we presented a class Employee. We now make this class more realis-
tic by introducing several kinds of employee: the salaried and hourly employees
and the executive. The yearly compensation is calculated differently for each kind
of employee. Salaried employees and executives get a yearly salary, hourly
employees are paid by the hour, and executives get bonuses.

With our current programming tools, changing the class of Fig. 3.1 to take
three kinds of employees into account would get messy. We would have to add
several fields to the class, most of which would be used in only one case.
Everywhere, there would be tests to determine which kind of employee is being
processed and to process the employee accordingly. Further, later changes, say, to
add a new kind of employee, would be difficult to do correctly.

To help solve such problems, we introduce a new structuring mechanism: the
subclass. It is the subclass, together with its notions of inheritance and overrid-
ing of methods, that make object-programming really useful. Java programs —
including the Java API classes— make heavy use of subclasses. For example,
writing GUIs would be far more difficult without subclasses.

Activity 4-1.1
shows how
class Employee
would have to
be changed to
take different
employees into
account. Watch
it!

• Introduce subclasses, inheritance of components, and overriding methods.
• See how to draw an object of a subclass.
• Learn about keyword super in calling superclass methods.
• Learn how to cast from a superclass to a subclass and vice versa.
• Discuss designing object-oriented programs.
• Introduce the final model of execution.
• Discuss abstract classes.

Actually, the subclass is not new to you. It was discussed in some detail in
Sec.1.4, and you have already learned that the subclass is a mechanism for cus-
tomizing a class to fit new needs. An instance of the subclass has all the compo-
nents (instance variables and instance methods) that the superclass does, but it
can define new ones. In Sec. 1.4, we also showed how to draw an instance of a
subclass (see Fig. 1.9). In this chapter, we review the concepts discussed in
Sec.1.4 and go into more detail on some of the issues concerning subclasses.

4.1 The subclass definition

Figure 4.1 contains a definition of a class Executive. Because of the extends
clause

extends Employee

in the first line, class Executive is called a subclass of class Employee and class
Employee is called a superclass of Executive. The presence of this clause
means that every instance component of class Employee is also an instance com-
ponent of class Executive. We say that Executive inherits the instance vari-
ables and methods of Employee. But subclass Executive can have additional
instance components.

Figure 4.1 contains uses of keyword super in the constructor and functions
toString and getCompensation. Keyword super is explained in subsections
4.1.1 and 4.1.3.

Figure 4.2 shows how we draw an instance of subclass Executive. The
folder has two partitions. At the top is the partition for components that are inher-
ited from class Employee; the name Employee is in a box in the upper righthand
corner of the partition. At the bottom is the partition for components that are
defined in the subclass, Executive; the name of the subclass is in a box in the
upper righthand corner of the partition.

We draw every instance of a subclass in this fashion. Having a standard way
to draw such manila folders makes it easier to communicate.

Subclass Executive contains a private field, bonus. Since only Execu-
tives, and not other Employees, get bonuses, this field is placed in the subclass.
Superclass Employee contains only fields that represent properties that all
employees have.

Activities 4-1.2
and 4-1.3 dis-
cuss subclasses
with a slight
variation of
Employee and
its subclasses.

Get class Em-
ployee and its
subclasses
from a footnote
on lesson page
4-1 of the CD.

142 Chapter 4 Subclasses

Java syntax: Subclass definition
public class subclass-name extends superclass-name {

declarations of methods and fields
}

Purpose: To define a new file drawer, named subclass-name, and
describe the contents of its manila folders (instances of the class). They
have the methods and fields that are declared in superclass superclass-
name as well as the methods and fields being declared in the subclass.

4.1.1 Inheriting and overriding

A subclass inherits all the components of the superclass. This means that each
instance of the subclass contains all the instance components of the superclass.
The folder in Fig. 4.2 makes this clear.

Suppose a variable b contains the name a7 of the folder in Fig. 4.2 (later, we
see how to create the folder and store its name in b). Then, method getName in
the folder can be called using the expression

b.getName()

This expression evaluates to the string "Gries". This expression calls an inher-
ited method. In the same way, method getBonus in the folder can be called using

b.getBonus()

There are two instance functions getCompensation in folder a7. Which one
does the expression

b.getCompensation()

call? It calls the method that is declared in subclass Executive. We say that
method getCompensation in class Executive overrides the inherited method.

Comparing the two methods, we can see that this makes sense. Since the

Activity
4-2.2

4.1 The subclass definition 143

/** An executive: an employee with a bonus. */

public class Executive extends Employee {

/** Yearly bonus */

private double bonus;

/** Constructor: a person with name n, year hired d, salary 50,000, and bonus b */
public Executive(String n, int d, double b) {

super(n, d);

bonus= b;

}

/** = this executive’s bonus */

public double getBonus()

{ return bonus; }

/** = this executive’s yearly compensation */

public double getCompensation()

{ return super.getCompensation() + bonus; }

/** = a representation of this executive */

public String toString()

{ return super.toString() + ", bonus " + bonus; }

}

Figure 4.1: Subclass Executive

employee described in the folder is an executive, the compensation should be the
salary together with the bonus, not just the salary alone.

We capture this important point about object-oriented programming in the
following rule. The rule is written in such a way that it will work in later cases,
when we discuss subclasses of subclasses.

Public method overriding rule. When determining the instance
method to call (within a folder) for a call method-name(argu-
ments), start at the bottom of the folder and search upward until
the appropriate method is found.

Searching from the bottom upward ensures that the overriding method is called.
Notice that all the instance variables are private; they cannot be seen outside

the class in which they are defined. In fact, variables name, start, and salary
cannot be referenced in the methods of subclass Executive! However, their val-
ues can be retrieved using public, inherited, getter methods.

Using super to get at an overridden method
Look at function getCompensation in Fig. 4.1. It is supposed to yield the

sum of the salary and the bonus. How is the salary retrieved? The function
body cannot reference the field because it is private. Moreover, a call
getCompensation() within the function would call itself, since it is the over-
riding method!

Activity
4-2.3

144 Chapter 4 Subclasses

Do not override instance variables. Overriding instance methods is common. Overriding
instance variables —called shadowing rather than overriding— is allowed but
rare. We do not explain the rules for referencing shadowed variables in this text,
and we assume throughout that variables will not be shadowed.

Figure 4.2: An instance of subclass Executive

a7

Griesname

1997start

50,000salary

Employee(String, int)
getCompensation()
changeSalary(double)
toString() getName()
setName(String) getStart()
setStart(int)

Employee

25,000bonus getBonus()
getCompensation()
toString()
Executive(String, int, double)

Executive

Java provides a way out of this dilemma. To call the method getCom-
pensation in the superclass, prefix the call with super.:

super.getCompensation()

Notice that a reference super.salary is illegal because field salary is pri-
vate. If it were not private, super.salary would be legal. But then the use of
“super.” would be unnecessary.

Here is a step by step look at how the expression

super.toString() + ", bonus " + bonus

of function toString in instance a7 is evaluated.

(a) Evaluate super.toString(), yielding the value

4.1 The subclass definition 145

/** An hourly employee */

public class HourlyEmployee extends Employee {

/* Class invariant: salary = hourlyPay * hoursWorked */

/** Amount payed per hour and hours worked */

private double hourlyPay;

private int hoursWorked;

/** Constructor: a person with name n, year hired d, hourly pay p, and hours worked h */

public HourlyEmployee(String n, int d, double p, int h) {

super(n, d);

hourlyPay= p;

hoursWorked= h;

super.changeSalary(hourlyPay * hoursWorked);

}

/** = the hourly pay of this employee */

public double getHourlyPay()

{ return hourlyPay; }

/** = the hours worked by this employee */

public double getHoursWorked()

{ return hoursWorked; }

/** = This method currently has no effect.*/
public double changeSalary(double d) { }

/** = a representation of this hourly employee */

public String toString() {

return super.toString() + ", pay " + hourlyPay + ", hours " + hoursWorked;

}

}

Figure 4.3: Subclass HourlyEmployee

"Gries, year 1997, salary 50000"

(b) Catenate to it the string ", bonus ", giving thus far

"Gries, year 1997, salary 50000, bonus "

(c) Catenate to it the value of field bonus, giving the result

"Gries, year 1997, salary 50000, bonus 25000"

Functions getCompensation and toString in Fig. 4.1 make use of key-
word super to call inherited methods.

4.1.2 The class invariant

Figure 4.3 shows a second subclass of Employee: HourlyEmployee. Hourly
employees are paid by the hour, so the class has two private fields to contain the
hourly pay and the number of hours worked. The class also has two getter meth-
ods for obtaining the values of these fields.

Handling the inherited salary field of this class is a bit tricky. The superclass
has a procedure changeSalary(d) whose purpose is to change the salary to d,
but we can’t allow that procedure to be used for hourly employees because their
salary is based on the hourly pay and the number of hours worked. Therefore, the
subclass has an overriding procedure changeSalary(d) that does nothing.

Now look near the top of the class in Fig. 4.3. There is a comment, which
we call the class invariant. It states the relationship that must always hold
between the fields of an instance:

/* class invariant: salary = hourlyPay * hoursWorked */

Style Note
13.4

describing
variables

146 Chapter 4 Subclasses

Figure 4.4: An instance of subclass HourlyEmployee

a7

Griesname

1997start

50,000salary

Employee(String, int)
getCompensation()
addToSalary(double)
toString() getName()
setName(String) getStart()
setStart(int)

Employee

1600hoursWorked getHourlyPay()
getHoursWorked()
changeSalary(double d)
toString()
HourlyEmployee(String, int,

double, int)

HourlyEmployee

15.00hourlyPay

This comment is a reminder to whomever is writing or maintaining the class (or
simply reading it) to keep this relation true. The relation is called an invariant
because it is unchanging; it is “invariantly true” in each instance. Field salary
always contains the product of the hourly pay and the hours worked.

The constructor has a call on class changeSalary of the superclass, which
truthifies the class invariant initially. And, since none of the other methods of the
class change the hours worked, pay per hour, or salary, it remains true.

Of course, there should be some way to change the hours worked or pay per
hour. Self-help exercises ask you to write setter methods for these fields. In writ-
ing them, the class invariant reminds you to change field salary whenever you
change the hours or the pay per hour. Without the class invariant, you would not
know that this had to be done, and this would lead to a logical error in the class.

In any class that has several fields, there may be some relationship among
their values that has to be maintained. It is important to express this relationship
as a comment near the declarations of the fields and to make the comment thor-
ough, precise, and clear. You, the programmer, will rely on it when implement-
ing the methods of the class, and others will have an easier time reading and
understanding the class.

4.1.3 Constructors in a subclass

The purpose of a constructor in any class is to initialize some (or all) of the fields
of an instance when the instance is created. In class Executive, four fields have
to be initialized: three inherited fields and field bonus.

A general rule is to initialize inherited fields using a constructor of the super-
class. In class Executive, we have to do this because the inherited fields are pri-
vate. But even if they were public, it would be better to use a superclass con-
structor to initialize them. Since they are declared in the superclass, let the super-
class take care of them. This policy helps isolate parts of the program and makes
the program easier to maintain.

Within a constructor, a call to another constructor must be the first statement
of the body. That makes sense; initialize the inherited fields before the newly
declared ones.

In the constructor of class Executive, the first thought on calling the super-
class constructor would be to write:

Activity
4-2.1

4.1 The subclass definition 147

Java syntax: call superclass constructor
super (arguments);

Example: super("Gries", 1966, 2500);

Purpose: Call a constructor of the super-
class. Can be used only as the first state-
ment of a constructor body.

Java syntax: call inherited function/procedure
super.m(arguments)

Example: super.toString()

Purpose: To call method m of the superclass. Use
only when an overriding method was defined and
the superclass method is wanted.

Employee(n, d);

but that is not the syntax Java uses to call the superclass constructor. Instead, use:

super(n, d);

Thus, to call a constructor of the superclass, write a conventional call to the
superclass constructor but replace the name of the class name with super. Note
that there is no period following keyword super, as there is in the other use of
super (see Sec. 4.1.1).

If you do not call a superclass constructor
The first statement of a subclass constructor must be a call on a superclass

constructor. If you do not put one in, Java inserts this one:

super();

In this case, the superclass must have a constructor with no parameters —if
not, the program is illegal and a syntactic-error message will appear when you
try to compile the program. The error message may be so confusing that you have
trouble determining what the mistake is —unless you remember the rules that
Java inserts a superconstructor call if you do not. This error will happen more
often than you expect, unless you get in the habit of explicitly writing a call to
the superclass constructor as the first statement in the subclass constructor.

4.2 Casting about, or about casting

4.2.1 Apparent and real classes

An instance of class Executive of Fig. 4.1 can be created and stored using an
initializing assignment like

Executive c= new Executive("Gries", 1966, 25000);

An executive is an employee; in the same way, we say that an instance of class
Executive, like c, is also an Employee. And, we can assign it to an Employee
variable:

Lesson
page 4-3

148 Chapter 4 Subclasses

Figure 4.5: Two different views of the same object

a1

Employee

toString() ...

Executive

toString() getBonus() ...

a1

Employee

toString() ...

Executive

toString() getBonus() etc.

c a1 d a1

apparent
type:
Executive

apparent
type:

Employee

Employee d= c;

Just as Java automatically widens an int value to a double, Java widens the
instance of a class to an instance of one of its superclasses.

But what does widening an object mean? Widening an int to a double takes
time because a 4-byte value is changed into an 8-byte value with different char-
acteristics. Widening an object takes no time (at runtime) but just changes the
syntactic view of the object. Widening is best illustrated with an example.

Figure 4.5 shows on the left the syntactic view of object a1 as seen from c.
Apparently, c contains the name of an Executive, and references to all compo-
nents that are available in any instance of Executive are legal. So, calls
c.toString() and c.getBonus() are legal. We say that the apparent type of c
is Executive.

On the right is the syntactic view of the same object a1 as seen from d.
Apparently, d contains the name of an Employee, and references to all compo-
nents that are available in any instance of Employee are legal. So, the call
d.toString() is legal, but the call d.getBonus() is illegal. We say that the
apparent type of d is Employee.

We stress that the apparent type of an expression is a syntactic property. It
determines what component names can be referenced. If you write the call
d.getBonus() in your program, it will not compile.

The call d.toString() is legal. We now ask what it means —which method
it calls. According to the public overriding rule (see Sec. 4.1.1), it calls the
method toString that appears in the Executive partition of a1. Thus, even
though the apparent class of d is Employee, d.toString() calls the overriding
method of Executive.

Apparently, d contains an Employee, but in reality, it contains an
Executive. We say that the apparent type of d is Employee, but its real type is
Executive.

4.2 Casting about, or about casting 149

Polymorphism. Polymorphism, from a Greek word meaning multiform, means “capable of hav-
ing or occurring in several distinct forms”. The ability for a call like
e1.getCompensation() to call one of many different methods depending on
the value of e1 is a far more flexible form of polymorphism than the ad hoc
polymorphism mentioned in Chap. 2.

In ad hoc polymorphism, the method to be called is a syntactic property; it
determined at compile-time. In object-oriented polymorphism, the method to be
called cannot be determined until the call is to be executed at runtime, because
it depends entirely on e1’s value, which can change at runtime.

Without OO polymorphism —the ability to have the real type determine
which method to call— OO would not be half as useful as a structuring tool.

If method getCompensation is overloaded, e.g. there is a method by that
name with an int parameter as well as a method with no parameters, e1.get-
Compensation() exhibits both ad hoc and OO polymorphism.

One may ask why one would want to put an Executive object in an
Employee variable. Here is a reason. Below is a static function that yields the
maximum compensation of two employees:

/** = the maximum compensation of e1 and e2 */
public static double max(Employee e1, Employee e2) {

return Math.max(e1.getCompensation(),

e2.getCompensation());

}

Now consider the following assignments:

Executive e= ...;

HourlyEmployee h= ...;

double m= max(e, h);

In the call max(e, h), argument e is of class Executive and the corresponding
parameter e1 is of class Employee. Therefore, during evaluation of the call, the
apparent type of e1 is Employee but its real type is Executive. Hence, when the
call e1.getCompensation() in the method body is evaluated, it will call the
overriding function getCompensation that is defined in class Executive. This
makes sense: e1 is an Executive, so its compensation should be calculated
according to executive’s rules. Similarly, the call e2.getCompensation() in the
method body will call the overriding method that is in the HourlyEmployee par-
tition of folder h.

Below, we summarize the important points about the apparent class and real
class of an expression:

• The apparent class (or apparent type) of an expression is a syntactic
property; it is used to determine what component references are syntacti-
cally legal. For a class variable, its apparent class is the class with which
it was declared.

• The real class (or real type) of an expression is a semantic property. It is
the class of the value of the expression, and it can change while the pro-
gram is executing. The real class of an expression determines which com-
ponents are actually referenced —for a call to a public method, the over-
riding method in the real class is called.

150 Chapter 4 Subclasses

Java syntax: Operator instanceof
expression instanceof class-name

Example: d instanceof Executive

Meaning: evaluation yields true if the real
class of expression is class-name (or a sub-
class of class-name) and false otherwise.

Java syntax: Class cast
(class-name) class-expression

Example: (Executive) d

Meaning: evaluation yields a view of the value
of class-expression with apparent type class-
name. It does not change the real type.

4.2.2 Explicit widening and narrowing

To cast an expression to some class, use the class name, within parentheses, as a
prefix operator. Such a cast changes the apparent type of an expression. For
example, this expression has apparent class Executive:

new Executive("Gries", 1966, 25000)

but this expression has apparent type Employee:

(Employee) (new Executive("Gries", 1966, 25000))

A cast (C) e is widening if C is already the apparent type of e or if C is a
superclass of the apparent type of e. A class is narrowing if C is a subclass of the
apparent type of e. Below, the cast of x is a widening cast, while the cast of y is
a narrowing cast:

Executive x= new Executive("Gries", 1966, 25000);

Employee y= (Employee) x;

Executive z= (Executive) y;

Widening casts are unnecessary because Java does them automatically.
You have to be careful with narrowing casts. You can cast an expression only

to its real type or any superclass of its real type. To see the errors you might
make, consider this expression:

Activities
4-2.1, 4-2.2

4.2 Casting about, or about casting 151

Figure 4.6: An instance of subclass ParttimeEmployee

a9

Griesname

1997start

50,000salary

Employee(String, int)
getCompensation()
addToSalary(double)
toString() getName()
setName(String) getStart()
setStart(int)

Employee

1600hoursWorked getHourlyPay()
getHoursWorked()
changeSalary(double d)
toString()
HourlyEmployee(String, int,

double, int)

HourlyEmployee

15.00hourlyPay

PartTimeEmployee

components declared in class PartTimeEmployee

(HourlyEmployee) y

The real type of y is Executive, so to cast it to HourlyEmployee is a mistake,
and this mistake is sure to lead to a runtime error and abortion of execution.

4.2.3 Operator instanceof

At times, you may want to test what the real class of a variable is, so that you do
not make the mistake of casting an object to something that it is not. Use opera-
tor instanceof to do this. As an example, the following statement determines
whether the real type of x is HourlyEmployee and, if so, executes its then-part.

if (x instanceof HourlyEmployee) {

...

}

Operator instanceof can be useful. But if you find it necessary to use it fre-
quently, perhaps the structure of your classes is not adequate and some redesign
may be in order. If you find yourself writing code like that below, where you
have to test all possible subclasses, think about redesigning.

Activity
4-2.2

152 Chapter 4 Subclasses

Figure 4.7: An instance of subclass PartTimeEmployee, showing the Object partition

a9

Griesname

1997start

50,000salary

Employee(String, int)
getCompensation()
addToSalary(double)
toString() getName()
setName(String) getStart()
setStart(int)

Employee

1600hoursWorked getHourlyPay()
getHoursWorked()
changeSalary(double d)
toString()
HourlyEmployee(String, int,

double, int)

HourlyEmployee

15.00hourlyPay

PartTimeEmployee

components defined in class PartTimeEmployee

Object
equals(Object) toString() wait()

getClass() hashCode() clone()

if (d instanceof Executive) {

…

} else if (d instanceof HourlyEmployee) {

…

} else if (d instanceof OvertimeEmployee) {

…

} else if …

4.3 The class hierarchy

Subclasses of subclasses
We could extend class HourlyEmployee of Fig. 4.3 in at least two ways. We

could have a subclass PartTimeEmployee —part-time employees work only part
time (so they do not get health and retirement benefits), and the number of hours
worked is restricted in some fashion. We could also have a subclass Overtime-
Employee. Overtime employees are allowed to work overtime, usually at 1.5
times their normal hourly pay.

A folder of class PartTimeEmployee appears in Fig. 4.6. In it, there is one
partition for each class: PartTimeEmployee at the bottom, its superclass Hour-
lyEmployee above that, and its superclass Employee above that. The overriding
rule for public methods (see Sec. 4.1.1) works for such folders; to find the
method to call (within the folder), always search the folder from bottom to top.

In this case, both Employee and HourlyEmployee are called superclasses of
PartTimeEmployee. A subclass inherits the components of all its superclasses.

Subclasses of subclasses appear often in object-oriented programming. In
fact, the hierarchy can go quite deep. For example, class JFrame, which you stud-
ied in Chap. 1 and is part of the GUI classes for Java, is a subclass of Frame,
which is a subclass of Window, which is a subclass of Container, which is a sub-
class of Component, which is a subclass of Object. This hierarchy was designed
to create a flexible set of GUI classes.

4.3 The class hierarchy 153

Figure 4.8: The subclass tree

Object

Object PartTimeEmployee OvertimeEmployee

Component Employee

Container Executive HourlyEmployee

Window

Frame

JFrame

4.3.1 Class Object

Class Object, in package Java.lang, is automatically available in every Java
program. It enjoys a special status: every class that does not explicitly extend
another class, like Employee, automatically extends class Object. Object is the
superclass of all classes that do not extend other classes. Object is the “super-
est” class of them all.

Figure 4.8 shows some classes in a “tree”. The root of the tree is class
Object (computer scientists draw trees with their roots at the top). Attached to it
with lines underneath are two of its subclasses, Component and Employee;
attached to them with lines underneath are their subclasses; and so on.

Class Object has a number of public instance methods, some of which are:

equals(Object) toString()

getClass() hashCode()

clone() wait()

These methods are inherited by every object, so there should be an Object par-
tition in every manila folder that we draw, as shown in Fig. 4.7. We usually do
not draw this partition because it would clutter the folders and because we know
it is in every folder.

You already know about function toString, whose purpose is to produce a
String representation of the folder in which it appears. It is a good practice to
override it in almost every class that you write.

Most of the methods in class Object are outside the scope of this text. But
one needs a full discussion: function equals.

4.3.2 Boolean function equals

Boolean function equals tests for the equality of the names of objects. Here is
its definition:

/** = "the name of this object is the same as the name of obj" */
public boolean equals(Object obj)

{ return this == obj; }

Function equals is often overridden to compare the contents of folders
instead of their names. Care must be taken when overriding it to ensure that it has
properties that are usually associated with equality. The specification of equals
in the Java API indicates this clearly: The overriding function should be an equiv-
alence relation. This means that it should have the following properties:

• It is reflexive: for any folder x, x.equals(x) is true.
• It is symmetric: for any folders x and y, x.equals(y) and y.equals(x)

have the same value.
• It is transitive: for any folders x, y, and z, if x.equals(y) and

y.equals(z) are true, then x.equals(z) is true.

Activity
4-2.7

154 Chapter 4 Subclasses

In addition, it should have two other properties:

• It is consistent: x.equals(y) consistently returns true or consistently
returns false, provided no information used in equals comparisons on
the object is modified.

• For any folder x, x.equals(null) is false.

The spec of function equals says that it is generally necessary to override
method hashCode whenever equals is overridden to maintain the general con-
tract for method hashCode, which states that equal objects must have equal hash
codes. But the topic of method hashCode is outside the scope of this text.

An example of overriding equals
In Sec. 3.2.4, we discussed aliasing and equality and wrote this boolean

function in class Employee:

/** = "This Employee and e contain the same fields" */
public boolean equals(Employee e) {

return name == e.name

&& start == e.start

&& salary == e.salary;

}

We now rewrite this function so that it overrides function equals of class
Object. Thus, its parameter must be Object. Further, we must make sure that e
is not null and that its real class is Employee. Here is the function:

/** = "e is an Employee, with the same fields as this Employee" */
public boolean equals(Object e) {

return e != null

&& e instanceOf Employee

&& name == e.name

&& start == e.start

&& salary == e.salary;

}

4.4 Access modifiers

This section need be studied only if you are going to write your own packages
(see Chap. 11).

As you know, a private component in a class C can be accessed only in class
C, and not even in subclasses of C. A public component can be accessed any-
where. Classification private is extremely restrictive; public is extremely liber-
al. Java has two other access schemes, which we call protected and package, that
fall between these two extremes. Below, we list all four schemes, from least to
most restrictive:

Activity
4-2.6

4.4. Access modifiers 155

• A public component —a component declared with modifier public— is
accessible everywhere.

• A protected component —a component declared with modifier protect-
ed— of a class C is accessible in subclasses of C and in classes in the same
package as C.

• A package component —a component declared without an access modi-
fier— of a class C is accessible in classes in the same package as C.

• A private component —a component declared with modifier private—
of a class C is accessible only in class C.

With most of the programs that you write, you do not use a package state-
ment, so all the classes are automatically in the default package. Since all your
classes are in the same package, there is no recognizable difference between
access schemes protected, package, and public. Therefore, you can stick to using
just private and public.

4.5 Object-oriented design

In Sec. 3.5, we discussed the design of programs that contained classes. We
focused on the objects of the problem domain. We made a list of noun phrases
that described the objects that we thought the program would be manipulating,
and then we developed classes that would describe (some of) them. Some of the
verbs of the problem domain became methods of the classes.

In this section, we extend our notion of object-oriented design to include
subclasses.

4.5.1 The is-a relation

Consider designing a program to maintain a database of people associated with
a university. We start by constructing noun phrases for the objects that the pro-
gram will manipulate. What kind of people do we have? Well, there are grad stu-
dents, undergraduates, and non-degree students who are just taking a course.
There are professors, associate professors, and assistant professors. There are
secretaries, lab technicians, janitors, alumni, and so on.

Such a jumbled list of people is not easy to work with, so we organize them
into broad categories, such as student, faculty, staff, and alumni:

university member
student

graduate
undergraduate
nondegree student

faculty member
professor

Activity
4-4.1

Lesson
page 4-4

156 Chapter 4 Subclasses

associate professor
assistant professor

staff member
secretary
technician
janitor

alumni

The indentation used above is used to describe the is-a relation. For exam-
ple, the three lines indented underneath the entry staff member indicate that a sec-
retary is a staff member, a technician is a staff member, and a janitor is a staff
member. Also, a student is a university member, a professor is a faculty member
is a university member, and so on.

The is-a relation is fundamental in dealing with subclasses: if c is a b, then
when constructing classes, we make C a subclass of class B. For example, sup-
pose we write a class for each of the objects in this hierarchy. Then, class
UniversityMember has no superclass (except Object). Class Student is a sub-
class of UniversityMember, Professor is a subclass of FacultyMember, and so
on. So, we have a general guideline:

Make a class B a subclass of class C if each instance of B is a C.

Commonality of behavior
We explain why we structure classes and subclasses according to the is-a

relation, using students as an example. The three kinds of students share common
behavior, which will be reflected in the instance methods in class Student. For
example, all students have a name, so there will probably be a method to get this
name. And they pay tuition. Method getName may be defined in class Student,
but all university members have names, so the method is better defined in
UniversityMember and inherited in class Student. Only students pay tuition, so
method payTuition will be defined in class Student.

Thus, we have the following principle:

Subclass principle: Structure classes so that behavior that is
common to several classes can be defined in a superclass of those
classes.

Sometimes, we insert new classes to make better use of this guideline. For
example, all faculty and staff get pay, so we may decide to insert a new class,
Employee, so that method getPay may be placed in it.

4.5. Object-oriented design 157

4.5.2 Example of object-oriented design

We design classes that facilitate drawing various shapes in a graphics window —
parallelograms, rhombuses, squares, etc. Later, you can augment these with
classes to draw triangles, right triangles, and other shapes of your choosing.

Class Shape
Class Shape will be the superclass of all shape classes —see Fig. 4.9. A

basic property of any shape is its placement in a graphics window, and its place-
ment is determined by the coordinates of the upper left corner of a bounding rec-
tangle for the shape. The constructor has these two values as parameters, and we
provide getter methods for them. We also have method toString, which may be
useful when debugging programs that create and use shapes.

The only other method is drawShape. This method should never be called,
since instances of Shape contain not shapes but only positions of shapes! As we
will see, it is included only so that it can be overridden in subclasses.

In the design of Fig. 4.9, we have written the function bodies with return
statements that return the default value for the return type. This is so that this
class definition is syntactically legal and will compile.

Activity
4-4.2

Get the classes
in this design
from a footnote
on lesson page
4-4.

158 Chapter 4 Subclasses

import java.awt.*;

/** A shape at an (x, y) coordinate. */

public class Shape {

/** Constructor: a shape that fits in a bounding rectangle with upper-left corner (x, y) */

public Shape(int x, int y){}

/** = x-coordinate of the upper-left corner of the bounding rectangle */

public int getX()

{ return 0; }

/** = y-coordinate of upper-left corner of the bounding rectangle */

public int getY()

{ return 0; }

/** = a description of this Shape, of the form (x-coordinate, y-coordinate) */
public String toString()

{ return ""; }

/** draw this shape using Graphics g --not to be called */
public void drawShape(Graphics g) {}

}

Figure 4.9: The design of class Shape

Subclass Parallelogram
We design the class for the first shape, class Parallelogram. This class is

a subclass of class Shape, which provides the position of the parallelogram.
We determine what is needed to define a parallelogram whose bounding rec-

tangle has upper-left corner (x, y). A parallelogram has two horizontal sides of
length l1 (say) and two vertical sides of length l2 (say). But this does not define
how much the parallelogram leans. For this purpose, we use a value d, which we
call the leaning factor of the parallelogram. If d is at least 0, the parallelogram is
as defined by the diagram on the left in Fig. 4.10, and if d is negative, it is as
defined by the diagram on the right. Coordinates (x, y), lengths l1 and l2, and
leaning factor d completely determine the position, size, and shape of the paral-
lelogram.

We develop specs of the methods in class Parallelogram. See Fig. 4.11.
The constructor has as its parameters the five properties that define a parallelo-
gram. The class has procedure drawShape, which draws the parallelogram using
a Graphics object g. This procedure overrides drawShape in superclass Shape.

This ends the design of class Parallelogram.

Activity
4-4.2

4.5. Object-oriented design 159

import java.awt.*;

/** A parallelogram that can be drawn. */

public class Parallelogram extends Shape {

/** Constructor: a parallelogram with horizontal length l1, other length l2, bounding
box with top-left corner (x, y), and leaning factor d

*/

public Parallelogram(int x, int y, int l1, int l2, int d) { }

/** Draw this parallelogram using g */
public void drawShape(Graphics g) { }

/** = a description of this parallelogram */
public String toString()

{ return ""; }

}

Figure 4.11: Specification of class Parallelogram

Figure 4.10: Defining a parallelogram in terms of x, y, l1, l2, and leaning factor d

(x,y) (x, y)

l2

d l1

l2

l1

-d

Subclass rhombus

A rhombus is a parallelogram whose sides are all the same length. Note the
phrase “is a” in the previous sentence. A rhombus is a parallelogram. Therefore,
we make Rhombus a subclass of class Parallelogram. Its design appears in Fig.
4.12

The constructor for class Rhombus has as its parameters the four properties
that define a rhombus. We decide that we do not need to override inherited pro-
cedure drawShape. After all, a rhombus is a parallelogram, and the inherited pro-
cedure should work. However, we do override function toString because we
want toString to tell us what kind of shape the instance describes. For example,
toString could produce output like this:

"rhombus, pt (5, 20), side length 60, leaning factor 7 "

Class Rhombus is included just to make it a bit easier for clients. Instead of
creating a Parallelogram with the two side lengths equal, they can create a
Rhombus with only one side length.

Class Square
Finally, we design a class Square. A square is a rhombus in which each

angle is 90 degrees, i.e. has leaning factor 0. Since a square is a rhombus, we
make Square a subclass of Rhombus.

The constructor of Square is quite straightforward, as is method toString.
At this point, a bit of thinking about implementation creeps in. It is easy to

draw a square using Graphics procedure drawRect. Therefore, we override
inherited procedure drawShape so that we can have a simple implementation. Is
this a good idea? In this small design of shape-drawing classes, it does not real-
ly matter whether we override drawShape or not. We do it just to show the kind
of thinking that might go on in a design.

Activity
4-1.3

Activity
4-4.3

160 Chapter 4 Subclasses

import java.awt.*;

/** A rhombus that can be drawn. */

public class Rhombus extends Parallelogram {

/** Constructor: a rhombus with side length l, bounding box with top-left corner
(x, y), and leaning factor d.

*/

public Rhombus(int x, int y, int l, int d) { }

// = description of this parallelogram
public String toString()

{ return ""; }

}

Figure 4.12: The design of class Rhombus

Discussion
We designed four classes that create shapes in a graphics window. They

form a chain, moving from the abstract, in which no shape but only a position is
described, down to more and more restrictive shapes. This is the nature of the
object-oriented approach. As one proceeds down a hierarchy of classes, one
encounters more and more properties and restrictions.

We could design other shape classes. For example, a rectangle is a parallel-
ogram in which the angles are equal (90 degrees), so we could have a subclass
Rectangle of Parallelogram. That brings up a question: A square is a rectan-
gle whose sides are equal, and a square is a rhombus whose angles are equal;
should class Square be a subclass of Rectangle or of Rhombus? It cannot be
both because “multiple inheritance” —inheriting from two difference super-
classes— is not allowed in Java. This is a situation where the subclassing feature
of Java cannot be made to model the problem domain exactly.

Java does have another feature, the interface, which could be used to model
the situation with rectangle, rhombus, and square more exactly. See Chap. 12.

The actual implementation of these classes is straightforward, and we leave
them to you. Also, the implementation can be found on the CD ProgramLive.

Using the shape classes
Activity 4-4.4 of the CD discusses a Java program that uses the shape class-

es to draw a figure like the one shown to the left. The design of the figure was
done with pencil and paper, away from the computer. We drew the figure and
determined what variables were needed and what they would represent.
Attempting to design the figure while on the computer would be inefficient.

The presence of the shape classes makes this figure fairly easy to draw —
imagine trying to draw it using only the original methods of class Graphics. And
yet, the classes themselves are quite short and simple. A good design will lead to
a simple, clear structure and a relatively simple program that is easy to use.

4.5 Object-oriented design 161

import java.awt.*;

/** A square that can be drawn */

public class Square extends Rhombus {

/** Constructor: a square with side length l and top-left corner (x, y) */

public Square(int x, int y, int l) { }

/** draw this square using Graphics g */

public void drawShape(Graphics g) { }

/** = a description of this square */

public String toString()

{ return ""; }

}

Figure 4.13: The design of class Square

Finally, lab 4 of Lesson 4 of ProgramLive, title “Practice with shapes”, asks
you to modify the picture in several ways.

4.6 The final model of execution

In Sec. 3.5, we described the steps in executing a method call. Below, we repeat
the steps, just for completeness. But there is one difference. Now that we have
subclasses, during step 4 (executing the method body), we have to be more care-
ful about what a name refers to when it is referenced in the method body. We
have changed this step slightly to refer to the discussion below the list of steps.

1. Evaluate the arguments of the call and push them onto the call stack.

2. Draw a frame for the call on top of the call stack; the frame includes the
argument values at the top of the stack. This frame will become the new
active frame.

2(a) Fill in the name of the method and set the program counter to 1.
2(b) Fill in the scope box with the name of the entity in which the method
appears: the name of a folder for a non-static method and the name of the
class for a static method.
2(c) Draw the local variables of the method body in the frame.
2(d) Label the argument values pushed onto the call stack in the first step
with the names of the corresponding parameters.

3. Execute the method body. When referencing a name, look in the (new
active) frame for it. If it is not there, look in the item given by the scope
box of the frame.

4. Erase the frame —pop it from the stack. If the method is a function and
the call is terminated by execution of a return statement return e;, push
the value of e onto the call stack.

Finding the item referenced by a name
Executing the method body (step 3 above) generally requires finding the

variable to which a name refers or finding a method to which a method call
refers. When dealing just with classes (but not subclasses), this task is rather sim-
ple: look in the active frame, and if it is not there, look in the folder or file draw-
er given by the scope box of the frame. Now that we have introduced subclass-
es, the problem of finding a variable or method is more complicated. So we give
a detailed explanation.

Remember that the program being executed is syntactically correct (if not, it
could not be executed) and that it is known whether a variable is a parameter,
local variable, static variable, or instance variable, and similar information is
known for the method m of a method call m(args). Also, a reference to a variable
has the form x or expression.x, where x is a variable name and expression is

Activities
4-3.1, 4-3.2

162 Chapter 4 Subclasses

either a class name or an expression that yields the name of a folder of some
class. (A similar statement can be made about a method call.)

With this introduction, we describe how to determine the variable or method
given by a variable reference or method call during execution of a method body.

1. Find a variable x (where x is a variable name) or a method for a call
m(args).

1a: x (or m) is static. The scope box of the active frame contains
either the name of some class C (say) or the name of a folder of
some class C. Look for x (or suitable method m) in C’s file drawer,
then in the file drawer of its superclass, etc., until it is found.

1b: x is a parameter or local variable. Find it in the active frame.

1c: x is an instance method. Search the folder whose name is
given in the scope box of the active frame. In searching, start at
the bottom and search upward.

1d: m(arg) is an instance method. Search the folder whose name
is given in the scope box of the active frame. In searching, start at
the bottom and search upward.

2. Find a variable for expression.x or a method for a call expression.
m(arguments).

2a: x (or m) is static. Evaluate expression to yield either a class-
name C or a folder of some class C. Look for x (or suitable method
m) in C’s file drawer, then in the file drawer of its superclass, etc.,
until it is found.

2b: x is an instance variable. Evaluate expression to yield the
name of a folder. Search that folder —start at the bottom and
search upward.

2c: m is an instance method. Evaluate expression to yield the name
of a folder. Search that folder for a suitable method —start at the
bottom and search upward.

4.7 Abstract classes

Class Shape of the previous section might be used incorrectly in two ways:

1. Class Shape is present only to provide a superclass of other shape class-
es. Instances of Shape should not be created, but creating them is not pro-
hibited.

2. Method drawShape in class Shape should never be called; every subclass
should override it. However, overriding the method cannot be enforced.

Lesson
page 4-5

4.7 Abstract classes 163

This kind of situation occurs frequently, so Java provides a construct, the
abstract class, to handle it better. We use class Shape of Fig. 4.9 to illustrate. It
is written as an abstract class in Fig. 4.14. It differs from Shape of Fig. 4.9 in two
ways.

1. The class has been changed into an abstract class. This is done by insert-
ing keyword abstract before keyword class in the first line of the class
definition:

public abstract class Shape {

An abstract class cannot be instantiated: expression new Shape(…) is ille-
gal.

2. Method drawShape has been made into an abstract method. This is done
by inserting keyword abstract in the method definition and replacing
the body by a semicolon:

public abstract void drawShape (…);

An abstract method of an abstract class must be overridden in every sub-
class (unless the subclass is also abstract).

That is all there is to abstract classes and abstract methods: an abstract class
cannot be instantiated, and an abstract method must be overridden. With these

164 Chapter 4 Subclasses

import java.awt.*;

/** A shape on a screen. */

public abstract class Shape {

/** Constructor: a shape that fits in a bounding rectangle with upper-left corner (x, y) */

public Shape (int x, int y){ }

/** = x-coordinate of upper-left corner of bounding rectangle */

public int getX()

{ return 0; }

/** = x-coordinate of upper-left corner of bounding rectangle */

public int getX()

{ return 0; }

/** = a description of this shape, of the form (x-coordinate, y-coordinate) */
public String toString()

{ return ""; }

/** Draw this shape using g */
public abstract void drawShape(Graphics g);

}

Figure 4.14: Design of class Shape as an abstract class, with abstract method drawShape

two new features, we have removed the two problems with class Shape.

4.8 Key concepts

• Subclass. A subclass is a class that extends another class, called its superclass.
The subclass inherits all the components of the superclass, i.e. each instance of
the subclass contains the instance components of the superclass. The subclass
can define its own components and override (redefine) the inherited methods.

• Class invariant. The values of the fields of a subclass generally have to satis-
fy certain constraints. It is a good idea to write these constraints as a comment at
the beginning of the class body, just before the declarations of the fields.

• Subclass constructor. A constructor in a subclass should begin by calling a
constructor of the superclass to initialize the inherited fields. In the constructor
call, use keyword super instead of the superclass name.

• Overriding an overriding method. If a method m is overridden, a call m(…)
calls the overriding method. Use the notation super.m(…) to call the inherited
method.

• Casting. One can cast an expression to a class C using the prefix operator (C).

• Apparent and real class-types. The apparent class of a class expression e is
syntactically determined from the class-types of its operands. A component ref-
erence e.v or e.m(…) is legal only if variable v or method m(…) is available in
the apparent class of e. The real class of e is the class of the folder whose name
is currently in e; the real class can change whenever e is assigned a value. The
variable or method actually referenced by e.v or e.m(…) depends on the real
class of e, and not on the apparent class of e.

• Operator instanceof. Expression e instanceof C is true if and only if the class
of folder e is C or a subclass of C.

• Class Object. Object is the superclass of all classes that do not explicitly
extend a class. Object contains instance functions toString and equals, which
are often overridden in subclasses. Boolean function equals should be an equiv-
alence relation.

• Access mechanisms. The four access mechanisms public, protected, package,
and private provide increasing restrictions on access of components. If you are
using only the default package, there is no difference between the first three.

• Object-oriented design. The is-a relation provides insight into OO design with
subclasses. If a problem-domain entity x is a y (e.g. an undergrad is a student), it
may make sense for the class of x to be a subclass of the class of y. Common
behavior of several subclasses is moved to their superclass as much as possible.

• Abstract classes and methods. An abstract class cannot be instantiated; an

4.8 Key concepts 165

abstract method must be overridden.

4.9 Self-review exercises

SR1. If class C1 inherits from class C2, then C1 is a _____________ of C2 and C2
is a _____________ of C1.

SR2. Which generally has more functionality, a subclass or its superclass?

SR3. True or false? Casting an object of a subclass to its superclass type is a nar-
rowing cast.

SR4. True or false? Casting an object of a subclass to its superclass type can be
done automatically.

SR5. Defining two methods with the same name within a class is called ______.
Redefining a method of a superclass within a subclass is called ______

SR6. Give an example of each of the two ways of using keyword this.

SR7. Give an example of each of the two ways of using keyword super.

SR8. What access modifier is used to hide fields of a superclass from its sub-
classes?

SR9. Does it make sense to make an instance method private? Explain your
answer.

SR10. What class is the “superest” class of them all, in that it is a superclass of
all other classes?

SR11. Name two functions that are inherited by every single class you write?

SR12. If you override method equals(Object), what properties should the new
method have?

SR13. How is the “is-a” relation used in object-oriented design?

SR14. True or false? You can create an instance of an abstract class.

SR15. What is a class invariant?

SR16. What is the public method overriding rule?

Answers to self-review exercises

SR1. C1 is a subclass of C2 and C2 is a superclass of C1. SR2. Subclass. SR3.
false; it is a widening cast. SR4. True. SR5. Overloading and overriding. SR6.
meth(this) calls method meth, giving it this instance as an argument. this(62)
calls the constructor of this class that has an int parameter. SR7. super.to-
String() calls the inherited toString function. super(62) calls the construc-

166 Chapter 4 Subclasses

tor of the superclass that has one parameter, of class int. SR8. private. SR9.
Yes, it can make sense. In implementing a class based on its specification, it may
be advantageous or necessary to add new methods for simplicity or readability
(or other reasons). These new methods are not mentioned in the specification and
should not be available to users of the class. SR10. Class Object. SR11.
equals(Object) and toString(). SR12. It should be an equivalence relation:
reflexive, symmetric, and transitive. SR13. If a B is a C, then B should be a sub-
class of C. SR14. False. SR15. A class invariant is a relation concerning the
fields of the class that should be true before and after each method of the class is
called. Essentially, the class invariant is given by the group of definitions of the
fields of the class. SR16. When determining the instance method to call (within
a folder) for a call method-name(arguments), start at the bottom of the folder
and search upward until the appropriate method is found.

Exercises for Chapter 4

E1. Obtain classes Employee, Executive, and HourlyEmployee that are dis-
cussed in Sec. 4.1 from a footnote on Lesson page 4-1 of the CD. Design and
implement a fourth class, SalariedEmployee. An instance of this class repre-
sents an employee that is paid on a yearly basis; the employee gets no bonus and
no overtime.

E2. Add a constructor to class Employee (and the other classes as well) of
Exercise E1 that initializes the hire date with the date at which an instance is cre-
ated. Thus, in Employee, this constructor has only one parameter, the name of the
person.

E3. Design and implement a class Manager, which extends class Salaried-
Employee of Exercise E1. An instance should contain the name of the depart-
ment that the manager manages. You determine what extra methods are needed
and what function toString should produce.

E4. Design and implement a class Address, which contains a house number,
street name, city, state, and zip code (for a house in the United States). Add a
field to class Employee of Exercise E1 to contain the address of an employee,
and add whatever methods are needed to make it accessible from outside the
class.

E5. Suppose you are going to implement a set of classes that, together, describe
modes of transportation (e.g. plane, auto). Each of these modes has its own sub-
modes (e.g. an auto could be a car, SUV, truck, etc. Develop a hierarchy of such
modes of transportation, which would end up being a hierarchy of classes and
subclasses. This is an open-ended question, and there is no single answer.

E6. Turn to lesson page 4-1 on the ProgramLive CD and click on “Proj”. A win-
dow opens, with some projects in it. Carry out project “Movie reviews”.

Exercises for Chapter 4 167

E7. Consider class Counter of Fig. 4.15. Create a subclass in which the incre-
mentation is done by 2 instead of 1. Be sure to specify any methods you write
carefully.

E8. Consider class Counter of Fig. 4.15. Create a subclass that changes the value
of the counter to 0 whenever it reaches 60 (this could be used to count minutes
on a clock). Thus, the range of values of this Counter is 0..59. We call this
“counting mod 60”. Be sure to specify carefuly any methods you write.

E9. Consider class Counter of Fig. 4.15. Create a subclass in which increment-
ing is done “mod n”, where n ≥ 2 (see the previous exercise). The user should
give n as an argument in a constructor call. Be sure to specify any methods you
write carefully.

E10. Consider class Counter of Fig. 4.15. Create a subclass in which the value
is interpreted as minutes and seconds, e.g. 125 is two minutes and five seconds.
The only change necessary is in method toString, which should return a string
that gives the counter in minutes and seconds.

E11. Design and implement a class Timer, an instance of which contains hours,
seconds, and minutes. It should use three private fields to contain the hours, sec-
onds, and minutes, and each of these field should be some form of Counter (see

168 Chapter 4 Subclasses

/** A counter, which can be incremented */

public class Counter {

private int value= 0; // the current value of the counter

/** Constructor: a counter that starts at 0 */

public Counter (){ }

/** = this counter */

public int getCounter()

{ return value; }

/** Set this counter to c */
public void setCounter(int c)

{ value= c; }

/** increment the counter */

public void click()

{ value= value + 1; }

/** = this counter, as a String */

public String toString()

{ return "" + value }

}

Figure 4.15: Class Counter

the previous exercises). Include at least these methods: a method set to set the
hours, minutes, and seconds; a method click(), which increments the seconds
by 1 (and the minutes if the seconds becomes 0, and the hours in the same man-
ner); and method toString. Method toString should give the value in the form
hours:minutes:seconds.

E12. Write a class Point, which represents an (x, y) point in the plane. Include
normal methods, like toString, as well as instance function length(Point),
which yields the length from the point in which the function appears to its param-
eter. Now write a subclass ThreeDPoint, which represents a three-dimension-
al point in (x, y, z)space. Override method length appropriately. Is this an
appropriate way to write class ThreeDPoint, or should it stand alone and not be
a subclass of Point?

E13. Section 4.6.2 discussed the design of a set of classes whose instances were
shapes drawn using a Graphics g. Design, implement, and test a similar set of
classes whose superclass is Vehicle, which is some vehicle that appears at some
(x,y) position. Possibilities for vehicles are cars, trucks (with subtypes pickup,
flatbed, moving van, etc.), cycle (motorcycle, bicycle, unicycle), etc. This is a
completely open-ended problem: you choose the vehicles, what each vehicle
looks like, and the subclass hierarchy.

E14. Study the subclass hierarchy in the javax.swing and java.awt packages
that includes class JFrame. Look at the superclasses of JFrame and get a basic
idea of what each one is for and what its methods are.

Exercises for Chapter 4 169

Chapter 5

Some Useful Classes

OBJECTIVES

INTRODUCTION

The packages of classes that come with Java enhance the basic language tremen-
dously. Here, we study a few of the classes that come with Java.

The wrapper classes allow us to handle values of primitive types as objects
of a class. For example, an Integer object contains, or “wraps”, an int value.

Classes String and StringBuffer provide strings of characters. Usually,
one uses String, but for maximum efficiency when performing some operations
on strings, it is best to use StringBuffer.

Class Vector provides for the maintenance of a list of objects. An instance
of class Date is a particular time —down to the millisecond.

Classes DecimalFormat and NumberFormat provide functions for formatting
numbers. For example, we may want decimal numbers to appear always with two
places following the decimal point, e.g. 4.56. Class Locale provides number for-
mats for over 140 different “locales”: a locale is a country and a language.

Class Random provides functions for calculating “random” numbers. These
functions are useful in some games and in simulating various processes.

Reading from the keyboard and reading/writing files are not hard-wired into
Java. Instead, the ability to do IO (input/ouput) is provided by classes. We discuss
several ways of doing IO, as well as how to read from URLs.

• Describe the wrapper classes for primitive types.
• Describe classes String and StringBuffer.
• Describe classes Date and Vector.
• Describe how to format numbers.
• Describe random-number generation.
• Describe how to do input/output.
• Describe URLs and class URL.

172 Chapter 5 Some useful classes

5.1 The wrapper classes

5.1.1 Wrapper class Integer

A variable of a primitive type, like int, is handled differently from a variable of
a class type. A variable of type int contains a value; a variable of a class type
contains the name of an object of the class, which in turn can contain fields with
values. It would be nice to be able to handle int and class-type variables in the
same way. To make this possible, Java provides a class Integer:

public class Integer {

private int val;

...

}

An object of class Integer contains a single instance variable val of type int.
Integer is called a wrapper class since an instance of it wraps an int variable.

Wrapped variable val is private, so it cannot be referenced outside the class.
In fact, we do not even know what name the variable has because the specifica-
tion of class Integer does not say. We used the name val just to be able to write
a declaration. There is no need to know the name because the value of this field
can be accessed only using getter method intValue:

/** = the value of the wrapped int */

public int intValue()

Moreover, there is no setter method for the field, so there is no way to change its
value. The field is immutable. The best you can do is to create a new instance of
class Integer with the desired value. For example, suppose variable d contains
the name of an Integer and we want to increment its wrapped variable. We can-
not, but we can assign to d the name of a new folder with the desired value:

d= new Integer(d.intValue() + 1);

To make this point clear, to the left in Fig. 5.1 we show variable d and the fold-
er whose name d contains. To the right, we show the state after execution of this
assignment to d.

Instance methods of class Integer
Above, we showed how an instance of class Integer wraps an int value.

You also saw the uses of constructor Integer(int) and getter function

Wrapper class
int is discussed
on lesson page
5-1.

Figure 5.1: Variable d before and after the assignment to it

d a1 d a2

a1

Integer

d 6

a2

Integer

d 7

a1

Integer

d 6

intValue(). Class Integer has a few other useful instance methods.
For example, there is a second constructor, which can be used to translate a

String value into a wrapped Integer. The String argument of the constructor
call is converted into an int, and a new instance of class Integer is created that
wraps it. The result of the new-expression is the name of the new instance. Here
is an example of its use:

Integer d= new Integer("254");

This constructor is useful when a string is read in using, for example, GUI
JLiveWindow:

Integer e= new Integer(JLiveWindow.getStringField(0));

Class Integer has methods for converting a wrapped value to a different
primitive type and to a String. For example, with e containing an Integer, we
can obtain its wrapped value using these function calls:

e.byteValue() e.shortValue()

e.intValue() e.longValue()

e.floatValue() e.doubleValue()

e.toString()

There is a method for comparing the wrapped value with another value:

/** = "x is an instance of Integer and its wrapped value
equals this wrapped value" */

public boolean equals(Integer x)

The argument of equals can be any class instance, but if it is not an instance of
class Integer, the result is false, e.g.

d.equals(new Long(254))

is false no matter what value d wraps.

Static components of class Integer
Class Integer is a good place to house static components that deal with

primitive type int. Two constants, i.e. variables with qualifier final, are:

Integer.MAX_VALUE; // Largest value of type int
Integer.MIN_VALUE; // Smallest value of type int

The specification does not say what these values actually are, but you can write
code to print them and use them in expressions, e.g.

System.out.println(Integer.MAX_VALUE);

d= Integer.MIN_VALUE + 1;

Class Integer contains a method for translating an int value x to a String;
here is a call to it:

Lesson page 5-
1 contains info
on static com-
ponents of
class Integer.

5.1 The wrapper classes 173

Integer.toString(x)

However, it is simpler to use the expression "" + x to do the job.
Class Integer also has static methods to get the binary, octal, and hexadec-

imal representations of x as Strings: use the function calls Integer.toBina-
ryString(x), Integer.toOctalString(x), and Integer. toHexString (x).

Finally, class Integer has functions for converting a String to an int. We
look only at method parseInt. Give it a String that represents an integer, and
it converts it to an int:

/** = The integer whose decimal representation is s */
public static int parseInt(String s)

The String representation can begin with a minus sign to indicate a nega-
tive value. But it cannot have any whitespace. The presence of whitespace or of
anything except the decimal representation of an integer results in an exception
and, unless you have prepared for it, termination of the program.

Method parseInt is often used in the following way. A String value is ob-
tained from the input in some manner, say, using our class JLiveWindow. Next,
instance method trim of class String is used to strip away whitespace from
either side of the String. The resulting String, with no whitespace on either
side, is used as an argument to parseInt. Finally, the resulting int value is
assigned to a variable:

d= Integer.parseInt(JLiveWindow.getStringField(0).trim());

5.1.2 Other wrapper classes

Wrapper classes exist in package java.lang for the other primitive types as
well. Here are their names:

Primitive type Wrapper class
byte Byte

short Short

long Long

float Float

double Double

char Character

boolean Boolean

The wrapper classes for the numerical types and for type boolean are all simi-
lar, and we do not discuss them further here. Look at their API specifications, or
look in Lesson 5 of ProgramLive.

Wrapper class Character has methods that you may find useful later on, so
spend a few minutes looking at them. There are static boolean functions to tell
whether a character is a lower-case character, an upper-case character, a digit, a
letter, a letter or digit, a possible first character of a Java identifier, a possible

Lesson page 5-
2 discusses
wrapper class
Character.

Lesson pages
5-1 and 5-2
contain specifi-
cations of the
methods in
these wrapper
classes.

174 Chapter 5 Some useful classes

other character of a Java identifier, a whitespace character (e.g. blank, tab, or
new line), and a space character. These functions can come in handy when you
are processing strings of characters in some fashion.

5.2 Classes String and StringBuffer

A string is a sequence of characters enclosed in quotes. For example, we show
below a string of 16 characters, three of which are the blank character:

"this is a string"

In this section, we discuss two classes that are used for holding and manipulat-
ing strings, classes String and StringBuffer, and write a few programs that
illustrate how strings can be processed. We begin by looking at how we write
such strings in Java.

5.2.1 String literals

In Java, a string like "it is" is called a literal of class-type String. Its length
is the number of characters in it, in this case, 5. The example in this paragraph
shows that the single-quote character ' and the blank character can appear in lit-
erals. In fact, almost any character can be written in a string literal. But some of
them have to be written in a special way.

To place a double-quote in a string literal, precede it by the escape charac-
ter \. For example, the following literal contains a blank, a double-quote char-
acter, and the digit 2: " \"2".

The sequence of characters \" is known as an escape sequence. Below, we
list other escape sequences and explain what they represent:

\\ backslash character \

\" double-quote character "

\' single-quote character '

\n new-line character
\r carriage-return character
\t tab character
\f form feed character
\b backspace character

The new-line and carriage-return characters are used in operating systems to
indicate the start of a new line. There are three major operating systems:
Windows, Macintosh, and Unix. One of them uses the new-line character, one of
them uses the carriage-return character, and one of them uses both. Such is life.

Many programs process strings of characters. For example, a text editor
does, and so does the Java compiler. But often, strings are used simply to anno-
tate output. For example, below, we write statements that print a value in the Java
console:

Activity
5-3.1

Lesson
page 5-3

5.2 Classes String and StringBuffer 175

System.out.print("The square of 25 is: ");

System.out.println(25 * 25);

5.2.2 The basics of String manipulation

A string literal has a class-type: String. Since String is a class, and not a prim-
itive type, the literal is contained in an instance of String, for example,

String variables can be declared and assigned values. Class String is special in
that there is no need to use a new-expression (although it can be used); just use
a string literal instead. For example, execution of these statements:

String s= "NO!"

String t;

t= "Yes.";

result in these variables and String folders:

We now describe various operations on strings and also introduce notation
for talking about strings.

Catenation of Strings
To catenate two strings means to join their characters into a single string.

The word concatenation is often used for this operation; we prefer the shorter
word, catenation. Java uses the binary infix addition symbol + for catenation:

"abc" + "xyz" evaluates to "abcxyz"

Of course, if both operands of + have numerical types, the symbol denotes addi-
tion, but if at least one operand is a String, the symbol denotes catenation.

If one of the operands of a catenation is a value of some primitive type, like
int or boolean, it is converted to a String. For example, the expression

2.5 + ", 62 "

evaluates to a String object whose value is " 2.5, 62 ".

Activity
5-3.3

a6

"NO!"
String

a7

"Yes."
String

t a7

s a6

a0

"xy z"
String

Activity
5-3.2

176 Chapter 5 Some useful classes

Catenation is often used in annotating output values to make them more
understandable. Suppose we have two int variables, month and day. Here is a
single statement that prints their values, but annotated with text so that the user
knows what the values are:

System.out.println(" month " + month + ",\nday " + day);

Note that the new-line character causes the characters following it to be printed
on a separate line.

When using the Java console for output when debugging programs, get in
the habit of annotating the output, even in a minimal fashion, to help you deci-
pher the output.

What is the value of the following expression?

2 + 5 + " apples".

There are two possible values, depending on which operation + is done first:

"7 apples"

"25 apples"

Since + is left associative, the operations are carried out from left to right, so the
first answer is correct. To get the second one, use either of these two expressions,
with the first being preferred because it requires fewer operations:

2 + (5 + " apples")

"" + 2 + 5 + " apples"

Invocation of function toString
Above, we said that if one operand of + is a String and the other is a prim-

itive-type value, the primitive-type value is converted to a String and catenation
is performed. There is one more case to consider:

c + s

where c contains the name of a folder and s is a String. In this case, the func-
tion call c.toString() is automatically invoked to produce a String represen-
tation of folder c, which is then catenated to s.

Recall that function toString has this specification:

/** = a description of this folder */

public String toString()

For reasons given in Sec. 4.3.1, function toString is present in every folder.
However, it may not do what you want, and that is a good reason to redefine
function toString in every class that you write.

The length of a String
Above, we made a mistake when we drew folders of class String: we omit-

Activity 5-3.4
shows execu-
tion of this
statement.

5.2 Classes String and StringBuffer 177

ted all the String instance methods. We now discuss some of these instance
methods. One of them, length, returns the length, or number of characters, of
the string that the instance contains. For example, we have:

"abcd".length() is 4

("abcd" + "ef").length() is 6

Non-Java notation for strings
Often, we will be talking about a particular character of a string s or a

sequence of adjacent characters of s. It helps to have a notation for referring to
these parts of s:

s[0] denotes the first character of s.
s[1] denotes the second character of s.
...

s[s.length()-1] denotes the last character of s.

For example, if s is the string "abc", then s[1] is the character 'b'. Also, if int
variable i contains 0, then s[i+2] is the character 'c'. Expression i of s[i] is
called the index of character number i. We stress that s[i] is not Java notation;
we use it because it helps us discuss strings. Also, when writing s[i], we assume
that i lies in the range 0..s.length() - 1.

A second non-Java notation describes a substring of a string:

s[h..k]

is the string consisting of the characters s[h], s[h + 1], …, s[k]. The length of
s[h..k] is k + 1 - h. Here are examples, assuming that s is "abcded":

s[2..4] is "cde"; it has length 4 + 1- 2 = 3

s[2..3] is "cd"; it has length 3 + 1- 2 = 2

s[2..2] is "c"; it has length 2 + 1- 2 = 1

s[2..1] is ""; it has length 1 + 1- 2 = 0

The last line above uses the convention that if the first index (2 in this case)
is one more than the second index (1), then the substring is the empty string. The
abbreviation s[h..] refers to the substring s[h..s.length()-1].

Referencing the characters of a String
Function charAt retrieves a character from a string. The call s.charAt(i)

evaluates to the character s[i]. Thus, "At peace".charAt(1) is 't'. In refer-
ence s.charAt(i), i is the index of the character in s.

Here is a specification of instance function charAt:

/** = this[i]. Precondition: 0 <= i < this.length */

public char charAt(int i)

Activity
5-3.5

178 Chapter 5 Some useful classes

Function substring
For s a string, the call s.substring(h,k) yields the value s[h..k - 1].

Yes, that is right; character s[k] is not included in the substring s.substring
[h,k]. Arguments h and k must satisfy:

h is the index of some character of s: 0 ≤ h < s.length().
k satisfies: h ≤ k ≤ s.length().

Note: s.substring(h,h) denotes the empty string of s beginning at index h.

Equality of strings
When testing for equality, the important thing to remember is that a String

value is an object. Consider String variables s and t as shown here:

The expression s == t yields false, even though folders a6 and a7 contain the
same value because expression s == t compares the values in s and t, which are
different. To compare the contents of folders, use instance function equals:

s.equals(t) or t.equals(s)

Both calls shown above yield true. Here is a call that would yield false:

"yeS.".equals(s)

Other methods of class String
Class String has several instance functions and one static function. We list

function calls to some of them below, with brief explanations. Look at the API
specs for String for more explanation. Below, p and q are Strings.

• p.compareTo(s): = -1, 0, or 1 depending on whether p <, =, or > s
• p.endsWith(s): = “s is a suffix of p”
• p.indexOf(s): = index of first occurrence of s in p (-1 if none)
• p.lastIndexOf(s): = index of last occurrence of s in p (-1 if none)
• p.startsWith(s): = “s is a prefix of p”
• p.toLowerCase(): = copy of p with all letters in upper case
• p.toUpperCase(): = copy of p with all letters in lower case
• p.trim(): = copy of p with blanks at the start and end removed
• String.valueOf(x): = x represented as a String. x can be any type

5.2.3 Changing a name format

Suppose string p contains a name in the format “last-name, first-name”, with
exactly one blank after the comma. The letters may be in upper or lower case.

Lesson 5-3
goes into more
detail in ex-
plaining these
methods.

a6

"Yes."
String

a7

"Yes."
String

t a7

s a6

Activity
5-3.6

5.2 Classes String and StringBuffer 179

Examples are:

"GRIES, david"

"gries, paul"

We write a program segment that stores p in string answer but in the form “first-
name last-name”, with the first letter of each name capitalized and the other let-
ters small. For example, execution of the program segment with each of these
inputs would produce

"David Gries"

"Paul Gries"

We start by writing code that extracts the first and last names from p. This
can be done in the three steps shown below. Each step uses English or our non-
Java notation because that is the simplest way to express it.

int i= index of the comma in p;
String lastName= p[0..i - 1];

String firstName= p[i + 2..];

The last two statements can be written in Java using function substring.
The first is more problematic. We could write a loop to search character by char-
acter for the comma, but class String contains a function indexOf that makes
the task simpler. A call p.indexOf(str) yields the first index in p of string str.
Therefore, we can write this sequence as:

int i= p.indexOf(",");

String lastName= p.substring(0,i);

String firstName= p.substring(i + 2);

We can use functions toUpperCase and toLowerCase of class String to
make sure that the first letters of the names are upper case and the rest lower case.
Thus, the final string answer is created using this assignment:

answer= firstName.substring(0,1).toUpperCase() +

firstName.substring(1).toLowerCase() +

" " +

lastName.substring(0,1).toUpperCase() +

lastName.substring(1).toLowerCase();

The moral of this story is: become familiar with the methods of class
String, for their use may save you time and energy in dealing with strings.

5.2.4 Extracting an integer from a string

Suppose a string p contains a sequence of integers, separated by blanks. There
may be blanks at the beginning and end of p as well. Here is an example of p:

180 Chapter 5 Some useful classes

" 134 12 1 0 21 "

We want to write a program segment that removes the first integer from p and
stores it in int variable d. We begin by breaking it down into a sequence of steps.
This is an example of top-down design, or stepwise refinement (see Sec. 2.5).

1. Remove the blanks from the beginning of p;
2. Add a blank to the end of p (so we know p ends in a blank);
3. Find the index i of the first blank in p;
4. Store p[0..i-1], as an integer and not as a string, in d;
5. Remove p[0..i-1] from p.

These steps are written in English and our non-Java notation. This allows us
to concentrate on the steps involved without worrying about how they are imple-
mented in Java. The curious step is step 2. It was inserted so that, during step 3,
we could assume that there was at least one blank after the first integer.

If you execute the sequence yourself, using p as given above, you will see
that it stores 134 in d and changes p to " 12 1 0 21 ".

How do we javanize each of the steps? Looking carefully through the meth-
ods of class String, we see that we can use functions trim, indexOf, and sub-
string, and to convert a string of digits to an integer, we use wrapper function
Integer.valueOf. Here is the sequence of steps, in Java:

p= p.trim();
p= p + " ";

int i= p.indexOf(" ");

d= Integer.parseInt(p.substring(0,i));

p= p.substring(i);

5.2.5 Class StringBuffer

An instance of class String is immutable: it cannot be changed. For example, in
the program segment at the end of the previous subsection, we could not append
a blank to p but had to create an entirely new string and assign it to p:

p= p + " ";

Package java.lang contains class StringBuffer, whose instances are
sequences of characters that are mutable: they can be changed. For example, to
append a blank to a StringBuffer variable q, use the procedure call:

q.append(" ");

When a string has to be changed a lot, it may be advantageous to convert it
to class StringBuffer, perform the changes on the StringBuffer, and then
convert the result back to a String. This can improve performance by eliminat-
ing the creation of many strings during the manipulation. We illustrate this later,
but first we summarize the methods available in instances of StringBuffer.

Lesson
page 5-4

5.2 Classes String and StringBuffer 181

Instance methods of StringBuffer
Below, we describe some methods of StringBuffer assuming that q is a

variable of that class. There are two constructors:

• new StringBuffer(): = a new StringBuffer that contains "".
• new StringBuffer(p): = a new StringBuffer that contains String p.

Functions q.length, q.charAt(), q.substring, and q.toString have
their counterparts in class String and need no discussion.

The following procedure calls change q. We omit various restrictions on the
arguments of procedure calls; see the footnotes on lesson page 5-4 of the CD for
a full description, as well as examples.

• q.setCharAt(i, c); Change q[i] to character c.
• q.append(x); Append x to q. Arg. x can be of any primitive

type or class type; if not a String, it is
converted to a String and appended.

• q.delete(h, k); Delete substring q[h..k - 1] from q.
• q.deleteCharAt(k); Delete character q[k] from q.
• q.insert(k, x); Change q to q[0..k - 1] + x + q[k..].

Convert x to a String, if necessary.
• q.replace(h, k, x); Replace q[h..k - 1] by String x.
• q.reverse(); Reverse the characters of q, so it reads backward.
• q.setLength(n): Set the length of q to n, either deleting a suffix or

appending null characters '\u0000' as necessary.

Java’s use of StringBuffers
StringBuffers are actually used to implement operation catenation +. For

example, assuming that x is String variable, the statement

x= "a " + 12;

is compiled into the equivalent of:

x= new StringBuffer().append("a ").append(12).toString();

A StringBuffer is created, and strings are appended to it. Finally, the
StringBuffer is converted to a String, which is assigned to x.

Extracting an integer from a StringBuffer
At the end of Sec. 5.2.4, we developed a sequence of statements to remove

an unsigned integer from a string. In Fig. 5.2, we define a function that removes
and returns an unsigned integer from its StringBuffer parameter. We cannot
write a similar function with a String parameter because Strings are
immutable. This is indeed a situation where a StringBuffer should be used.

Functions trim and indexOf do not exist in StringBuffer, so we wrote
loops to find the index of the first nonblank and the index of the first blank.

See a footnote
on lesson page
5-4 to get this
function.

182 Chapter 5 Some useful classes

5.2.6 Exercises on strings

E1. Write (and test in your IDE —test all your work) an expression to produce a
String that contains, in order, these things: "variable d: ", the value of
expression d, and "."

E2. Write an expression to produce a String that contains: the value of variable
firstName, ", ", and the value of variable lastName.

E3. Write an expression to produce a String that, when printed, will occupy two
lines. The first line should contain "Tuesday, November ", and the value of
variable day. The second line should contain three blanks followed by the value
of variable weather (e.g. "cloudy" or "rainy". Hint: use a new-line character.

E4. Write an expression to produce a String that, when printed, will occupy two
lines. The first line should contain "CS100, computers and programming"; the
second line, "instructor: " followed by the value of variable instructor.

E5. Write a function that, given a String s, returns the number of characters
before the first period '.' in s. If there is no period, it should return the length
of s. E.g. if s is "Gries. D.", the answer is 5; if s is "Gries, D", the answer
is 8. Do not use a loop.

5.2 Classes String and StringBuffer 183

/** Remove leading and trailing spaces from q and extract and return the unsigned int that
remains. q must begin with an unsigned integer, preceded by 0 or more blanks and ended
by either 1 or more blanks or the end of the string. Example: if q is " 45 32", change
q to " 32" and return 45. */

public static int extractInt(StringBuffer q) {

// Remove beginning blanks from q
int i= 0;

while (q.charAt(i) == ' ') {

i= i + 1;

}

q.delete(0, i);

// Find the index i - 1 of the last character of the unsigned integer
i= 0;

while (i != q.length() && q.charAt(i) != ' ') {

i= i + 1;

}

int v= Integer.parseInt(q.substring(0, i));

q.delete(0, i);

return v;

}

Figure 5.2: Function extractInt

E6. Write a function that, given a name like "Gries, Paul Christian" puts it in this
form: "Paul Christian Gries".

E7. Write a function that produces the English word for a digit 0, 1, ..., or 9.

E8. Write a function that, given an integer in the range 20..99, produces the
English word for it, e.g. for 30, produce "thirty" and for 42, produce "forty
two". Use the function of the previous exercise.

E9. Write a function that, given a String s that contains a time like "1:15PM"
or "11:00AM", produces a String that has the same time but in 24-hour format,
e.g. "13:15" or "11:00". You don’t need loops.

E10. Write a function that changes a date exemplified by the string "November
3, 2003" into this form: "3 November 2003".

The following exercises require loops and should be done using StringBuffers.
The result of each function is a String, but the value to be returned should be
first calculated as a StringBuffer and then converted to a String.

E11. Write a function that, given an integer n (≥ 0), produces a String that con-
tains the integers in the range 0..n, separated by commas. For example, for n =
2, produce a String that contains "0, 1, 2". Do the calculation using a
StringBuffer.

E12. Write a function that, given an integer n (≥ 0) and a String s, produces a
String that contains n copies of s, one after the other. Do the calculation using
a StringBuffer.

E13. Write a function that removes all blanks from a String.

E14. Write a function that duplicates each character of a String. For example,
for the "abc", produce the "aabbcc". Build the result in a StringBuffer.

5.3 Class Vector

An instance of class Vector (in package java.util) contains a list of objects. It
has several simple ways to refer to the objects and change them. For example, an
instance could contain the email addresses of your friends, information about
your compact disks, or information about students at Cornell University.

An instance of Vector is shown in Fig. 5.3. It contains three objects, num-
bered 0, 1, and 2, and it has room for two more (at the moment). Its size —the
number of objects it contains— is 3, and its capacity —the number of objects it
(currently) can contain— is 5. The instance contains many methods, which we
do not show in the object. We do show functions size and capacity, which give
the size and capacity of the Vector.

Two objects in this Vector are strings, and one is an Integer. Objects in a
Vector can have any class, but they cannot be primitive values.

Lesson
page 5-5

184 Chapter 5 Some useful classes

We introduce non-Java notation to help us talk about the elements of a
Vector v:

• v[2] refers to the element numbered 2.
• v[h] refers to the element given by the value of expression h.
• v[h..k] refers to the list of elements numbered h, h + 1, …, k.
• v[h..] refers to the elements numbered h, h + 1, …, v.size() - 1

For example, if v is (or contains the name of) the object in Fig. 5.3, then
v[2] is the string "blue", v[0..1] consists of 4, "red", and v[0..] is the whole
list of values.

In the notation v[i], i is called the index of the element.

5.3.1 Creating and adding to a Vector

The declaration

Vector d= new Vector(5);

creates an instance of class Vector that can hold 5 objects and stores the name
of the instance in variable d. Instance d can hold 5 objects, but at the moment it
does not hold any; its capacity is 5, but its size is 0. (There is also a constructor
with no parameters, which creates a Vector with capacity 10.)

Instance function add is used to add elements to a Vector. For example, the
following three statements add three objects to d, so Fig. 5.3 shows what d now
looks like.

Activity
5-5.1

5.3 Class Vector 185

Figure 5.3: A Vector with size 3 and capacity 5

a1

Patient

0 a6 1 a8 2 a4 3 ? 4 ?

size()
capacity()
etc.

a8

String
"red"

a4

String
"blue"

a6

Integer
4

Class ArrayList. Class Vector has been in the API package java.util from the beginning. In
the latest version of Java, a new class ArrayList was added to package
java.util. It has roughly the same functionality as Vector: an object contains
size() elements and has a capacity; elements can be added, deleted, accesssed,
changed, searched for, and so on. Use either ArrayList or Vector —it is your
or your instructor’s choice.

d.add(new Integer(4));

d.add("red");

d.add("blue");

The argument of a call to add is the object to be added. It cannot be a value of a
primitive type; elements of Vectors are objects. That is why we used an instance
of wrapper class Integer as the argument of the first call of add. If you are not
familiar with class Integer, study Sec. 5.1 on wrapper classes.

A two-parameter add procedure can be used to insert an object anywhere in
the Vector. Suppose Vector d is as in Fig. 5.3. Then execution of

d.add(1, "yellow");

changes d to contain this list of objects:

4, "yellow", "red", "blue"

We use our non-Java notation for Vectors to describe this procedure: The call

d.add(k, obj);

changed Vector d to contain the list of values d[0..k-1], obj, d[k..].
The call d.add(k, obj) takes more time than the call d.add(obj) because

the former has to move d[k..] to make room for the new object obj. Take this
fact into account when designing and developing a program that uses a Vector.

The capacity increases automatically
If adding an element to a Vector would cause the size to exceed the capac-

ity, the capacity is automatically increased, i.e. more memory is allocated so that
the Vector can contain more elements. The capacity is not increased by 1
because that would be far too inefficient, but is always doubled. Doubling the
capacity might seem like overkill, but, for purposes of efficiency, it is best.

In general, then, you do not have to worry about the capacity of a Vector
because the class takes care of it automatically. However, there may be some sit-
uations where space is at a premium and you want to be sure the capacity is as
close to the real size as possible. Class Vector provides methods that allow you
to change the capacity and to change how many elements are added when the
capacity has to be increased. We do not describe these methods because they are
not necessary in a first course on programming.

5.3.2 Changing and retrieving elements

To replace one element of a Vector with another, use procedure SetElement.
Given Vector d as in Fig. 5.3, execution of the call:

d.set(2, "purple");

changes d to contain the elements: 4 (as an Integer), "red", "purple". The first
argument of a call to set can be any integer in the range 0..d.size()-1; the

Activity
5-5.2

186 Chapter 5 Some useful classes

second can be any object. Thus, you have complete control over the list of
objects in instance d.

To reference an element of Vector d, use instance function get, giving it as
argument the number of the desired object. The following example writes the
first two elements of d on the Java console, separated by a comma and a blank:

System.out.println(get(0) + ", " + get(1));

Suppose we want to store d[1] of Vector d in a fresh String variable s
(given d as in Fig. 5.3). The following statement does not work:

String s= d.get(1); // Illegal statement

We state here how to fix it, without explanation. Thereafter, for those who
already know about class Object and casting, we explain why it does not work.

To retrieve and use an element using function get, you generally have to
know what class that element is and cast it to that class. In the above case, d[1]
is class String. So, the expression to obtain object d[1] is (String) d.get(1),
and this should be stored in s:

String s= (String) d.get(1);

The class of elements in a Vector
This little subsection should be read only if you know about the class hier-

archy, class Object, and casting.
The elements of a Vector automatically have class Object, the superest

class of them all. Therefore, when retrieving an element, you have to:

Cast an object that is retrieved from an instance of Vector to the
subclass to which it belongs so that the instance methods of the
subclass can be used.

Suppose d contains the name of the object in Fig. 5.3. Then, the first and second
elements of d can be retrieved and stored using these two statements:

Integer i= (Integer) d.elementAt(0);

String s= (String) d.elementAt(1);

Each element is cast from class Object down to the subclass that it really is.
Of course, if you do not know the class of a particular element, you must

find out, using operation instanceof, before casting it. If you attempt to cast it
to a class that it is not, a ClassCastException will be thrown, and your program
will (probably) abort.

The safe thing to do is to make all the elements in a Vector have the same
class-type, but of course this is not always appropriate.

5.3 Class Vector 187

5.3.3 Other methods in class Vector

Class Vector contains other methods that will help you create and maintain a list
of objects. The ones you are most likely to use are listed below. See lesson page
5-5 of the CD for more explanation, or look at the Java API specs for Vector.

When removing one or more elements from v, those with higher indices than
the removed ones are shifted down. Thus, the size of the v is reduced by the num-
ber of elements removed.

• v.toString() = a description of v of the form [v[0], v[1], …].

• v.contains(obj) = “obj is an element of v”.
• v.indexOf(obj) = index of first object in v that equals obj (-1 if none).
• v.indexOf(obj, k) = index of first object in v with index at least k

that equals obj (-1 if none).
• v.lastIndexOf(obj)= index of last object in v that equals obj (-1 if none).
• v.lastIndexOf(obj, k) = index of last object in v with index at most k

that equals obj (-1 if none).

• v.remove(i) Remove v[i] and return the removed element.
• v.remove(obj) Remove from v the first object that equals obj and return

the value of “an element was removed” (a boolean).
• v.removeRange(i, j) Remove v[i..j] from v.
• v.clear(); Remove all objects from v, so that its size is 0.

5.3.4 Exercises on class Vector

E1. In the Interactions pane of DrJava, create a Vector vec —remember to
import java.util.* first— and add these strings to it: "one", "two", "four".
Then, type the expression vec. What is its value? Next, execute the call:
vec.add(2, "three");. Now, what is the value of expression vec?

E2. In the Interactions pane of DrJava, create a Vector v1 that contains the val-
ues of these expressions: new Integer(1), new Integer(3), new Integer(5).
Then, find out the value of expression v1. Write down the values of the follow-
ing expressions (let DrJava evaluate them): v1.elementAt(1),
v1.elementAt(2), and v1.size().

E3. In the Interactions pane of DrJava, create a Vector v1 that contains the val-
ues of these expressions: new Integer(1), new Integer(3), new Integer(5).
Then, find out the value of expression v1. What happens when you execute this
assignment statement, and what do you have to do to fix it?

Integer middle= v1.elementAt(1);

E4. Write (and test) a boolean function with two arguments: a Vector v and an
Object x. The function returns the value of the sentence “x occurs at least twice

Activity
5-5.2

188 Chapter 5 Some useful classes

in v”. No loop is needed. Hint: what methods in v can you call to help you deter-
mine whether x occurs at least twice in v?

E5. Suppose Vector v has at least two elements. Write a sequence of Java state-
ments to interchange or swap v[0] and v[1]. Test the sequence.

E6. This exercise requires a loop or recursion. Suppose Vector v contains only
elements of class Integer. Write a function that yields the sum of the elements.

E7. This exercise requires a loop or recursion. Write and test a function with a
Vector argument v that produces a string containing the values of the elements
of v in reverse order, separated by commas and delimited by "[" and "]". This
is what v.toString() produces, but with the elements in the reverse order.

E8. This exercise requires a loop or recursion. Write and test a procedure that
removes from its Vector argument all elements that are not of class Integer.

E9. This exercise requires a loop or recursion. Write and test a procedure with a
Vector argument v that produces a new Vector whose elements are those of v
but with every element duplicated. For example, if v contains ["xy", "xx"], the
function produces a Vector consisting of: ["xy", "xy", "xx", "xx"].

5.4 Class Date

Class Date, in package java.util, is useful when you would like to obtain the
current time in your program. Execution of

Date d= new Date();

stores in variable d the name of a new Date object that represents the time, in
milliseconds, that has elapsed since 1 January 1970 (Greenwich Mean Time).
From d, you can get the year, month, day, hour, minute, and millisecond. And we
have used it this way in the past. However, there have been changes, and many
of the methods of this class are now deprecated —which means they have “less-
ened in value” because newer ones are now preferred. Below, we quote from the
API spec for class Date to show you why they have been deprecated.

Prior to JDK 1.1, class Date had two additional functions. It
allowed the interpretation of dates as year, month, day, hour,
minute, and second values. It also allowed the formatting and
parsing of date strings. Unfortunately, the API for these functions
was not amenable to internationalization. As of JDK 1.1, class
Calendar should be used to convert between dates and time fields
and class DateFormat should be used to format and parse date
strings. The corresponding methods in Date are deprecated.

So, you see that progress in one area (internationalization) caused other
changes. Java is a living, changing language.

Lesson
page 5-6

5.4 Class Date 189

We return to a discussion of the elapsed time. The spec of class Date tells
you that this elapsed time can be obtained using this method in package
java.lang.System:

public static native long currentTimeMillis();

If all you want is this time in milliseconds, use this function.

Estimating execution time
Sometimes, it is useful to get some measure of how long it takes for a

method call to be executed. For example, one might want some understanding of
the difference in execution time of linear search and binary search (see Chap. 8).
However, the time is usually so short —less than a millisecond— that one can-
not get meaningful results from executing the method call once. So one might try
executing it m times, for m an integer like 10, or 100, or even 100000.

One can get the execution time in milliseconds using the following:

long startTime= System.currentTimeMillis();

Call the method m times;
long time= System.currentTimeMillis() - startTime;

The results of such a test cannot be relied on precisely because part of the
elapsed time may have been allocated to other functions that had to be executed.
The operating system on your computer switches between different applications
(very quickly).

5.5 Formatting numbers

The way in which a number is printed using System.out.println(…) depends
on its size and type. The number of characters used, as well as the format, will
vary. Here are some examples:

System.out.println(5); 5

System.out.println(43); 43

System.out.println(23.56); 23.56

System.out.println(87654321.12345678); 8.765432112345678E7

System.out.println(.0000005); 5.0E-7

The conversion of a number to a string for printing in such contexts is done
using a method toString in some class. In some situations, however, we would
like to control the string format of a number ourselves. Perhaps we want all inte-
gers to use the same number of digits —using either leading zeros or leading
spaces. Or, we might want double numbers to print always with two places to
the right of the decimal point.

Several classes of the Java API give us this capability.

Lesson
page 5-6

190 Chapter 5 Some useful classes

5.5.1 Class DecimalFormat

Class DecimalFormat, in package java.text, allows you to describe the format
into which a number should be converted. Here is an example, called a pattern:

"$###,##0.00"

In the pattern:

• 0 represents a digit that will appear (a 0 appears if it does not exist).
• # represents a digit that is optional (a blank appears if it does not exist).
• . is the decimal separator.
• , is the grouping separator

Other characters that appear in a pattern, like $ in the pattern above, appear in the
converted number. Below, we show four patterns and several numbers as they
appear in each. Note especially the use of %, which causes the number to be mul-
tiplied by 100. Note also how the B’s, C’s, and $were placed when using the third
pattern. Finally, note that if an integer is too big for the given pattern, more
spaces are used.

number "$###,###,#00.00" "##0.00%" "B#,B#0C.$C0"

5 "$05.00" "500.00%" "B5.0BC$C"

123.321 "$123.32" "12332.10%" "B1,23.3BC$C"

.321 "$00.32" "32.10%" "B0.3BC$C"

We have just scratched the surface of patterns in class DecimalFormat. The
patterns and various methods are designed to make it possible to parse and for-
mat numbers in any locale (see Sec. 5.5.2), including support for Western,
Arabic, and Indic digits. But this introduction is enough to get you started.

Here is how to use class DecimalFormat. First, create an instance of the
class, using the desired pattern as the argument of the constructor call, e.g.

DecimalFormat decform= new DecimalFormat("##0.00");

Then, to convert the value of an expression to a String using that pattern, call
method decform.format with the expression as argument, e.g.

String s= decform.format(4.56);

Is the decimal point optional?
Look at the pattern in the constructor call of the following statement:

DecimalFormat decform1= new DecimalFormat("###.##");

Because there is no 0 to the right of the decimal point, the decimal point is
optional and appears only if the fraction is nonzero:

decform1.format(25) is "25"

Make the decimal point mandatory by executing the following statement:

5.5 Formatting numbers 191

decform.setDecimalSeparatorAlwaysShown(true);

Thereafter, decform1.format(25) is "25."

5.5.2 Formatting in locales

It is a shock to many Americans to learn that other cultures throughout the world
write numbers differently. For example, here is how Americans, the English, and
Russians write decimal numbers, currencies, and percentages:

US English Russian
1,500,012.253 1.500.012,253 1 500 012,253

$1,500.23 1.500.23 1 500,23

100,075% 100,075% 100 075%

For decimal numbers, the Americans and English give opposite roles to the
comma and period! The Russians, like the English, have a “decimal comma”
instead of a “decimal point” but use a space to separate groupings of digits.

It would be nice to be able to write numbers in the format of any culture. For
example, a GUI could let a user indicate which format to use. This is easy to do
in Java.

Class Locale
A locale consists of a language and country. Class Locale, in package

java.util, contains information about 140 locales (but not all possible locales
in the world). The English-U.S. locale is the default in most computers in the
U.S, but you can probably set the default to what you want on your computer. To
see what the default is on your computer, type this expression in DrJava’s
Interactions pane:

Locale.getDefault()

On a computer in the U.S., the value is "en_US", meaning that the language
is English and the country is the U.S. If the default locale for your computer is
French-Canada, it will print "fr_CA". The first two letters describe the language,
using a code defined by the international standard ISO-639. (ISO stands for
International Standards Organization). The last two letters describe the country,
using a code defined by the international standard ISO-3166.

Class Locale has over 50 static constants that are instances of class Locale.
For example, one of them is declared as:

static public final Locale KOREA= new Locale("ko","KR","");

Conversion using a Locale
Class NumberFormat, in package java.text, can be used to convert deci-

mal numbers using the conventions of a particular Locale. Suppose you have
placed an instance of Locale —one of the predefined ones— in variable locale.

Lab 3 of lesson
6 contains a
guided tour
through the use
of locales.

192 Chapter 5 Some useful classes

Our examples use locale "be_BY". Then do the following.
First, create an instance of class NumberFormat with locale as the argument

of the constructor:

NumberFormat convertD= NumberFormat.getInstance(locale)

Then, use instance method convertD.format to convert numbers to strings
using the conventions of locale locale, e.g.

convertD.format(123456543) yields the string "123 456,543"

To create an instance of NumberFormat whose format function converts
currencies (amounts of money) of locale locale, use function getCurrencyIn-
stance; the example shown below appears to have some unprintable characters:

NumberFormat convertC=

NumberFormat.getCurrencyInstance(locale)

convertC.format(43.56) yields the string "???43,56"

To create an instance of NumberFormat whose format function converts
percents using conventions of locale locale, use function getPercent-
Instance:

NumberFormat convertP=

NumberFormat.getPercentInstance(locale)

convertP.format(43.56) yields the string "4 356%"

5.6 Random numbers

About random numbers
It is often useful in a computer program to generate and use “random” num-

bers. For example, if you have written a game that uses a deck of cards, to start
the game you may want to shuffle the deck —place the cards in some random
order. One could use 51 random numbers in the range 1..52 to indicate the order
of the cards. As another example, to roll a pair of dice requires two random num-
bers in the range 1..6 to indicate which sides are face up. More serious applica-
tions also require random numbers. To gain insight into physical models, physi-
cists write simulations of various physical events that require random numbers
—perhaps dealing with weather, or atoms and molecules, or stars.

Random numbers are usually generated on the computer in the following
way. One starts with a first value r0 (say), called the seed. The first requested
random number r1 is generated from r0 using some formula. The second
requested random number r2 is generated from r1 using the same formula. The
third one r3 is generated from r2 using the same formula. And so on.

So, “random numbers” are not really random. They are generated in an
orderly, regulated fashion from a given seed. If you start with the same seed
again, you get the same sequence of numbers (which is useful when debugging).

5.6 Random numbers 193

Nevertheless, the sequences of random numbers that are generated by Java
have been shown to have properties that truly random sequences of numbers
would have. They are “random enough” for people to use them with confidence
in their programs.

5.6.1 Method Math.random

Static function Math.random() can be used to generate a sequence of random
numbers. Whenever a new number is needed, call Math.random() again. It will
give you a different random number each time.

This function produces a double result d (say) in the range 0 ≤ d < 1.
Suppose we want random values in the range 1..52 —for example, they

might be numbers of cards in a deck of cards. Thus, we need to convert a dou-
ble number d in the range 0 ≤ d < 1 into a value k in the range 1 ≤ k ≤ 52. We
show how to do this. Start with:

0 ≤ d < 1

Multiply all three values by 52:

0 ≤ 52 * d < 52

Cast the middle value to an int —this truncates toward 0:

0 ≤ (int)(52 * d) < 52

Since the middle value is an integer, we have:

0 ≤ (int)(52 * d) ≤ 51

Add 1 to each value:

1 ≤ 1 + (int)(52*d) ≤ 52

So, we create and store in k a random integer in the range 1..52 using the assign-
ment:

k= 1 + (int)(52*Math.random());

In the same way, the statements below store random numbers in the range
1..6 in two variables die1 and die2, thus simulating the roll of a pair of dice:

die1= 1 + (int)(6*Math.random());
die2= 1 + (int)(6*Math.random());

5.6.2 Class Random

To gain more control over the generation of random numbers than is given by
Math.random, use the methods of class Random, in package java.util. First,
create an instance of class Random, using one of its two constructors:

194 Chapter 5 Some useful classes

Random random= new Random(long);

where long is any long integer, or

Random random= new Random();

In the first case, the seed used to start the sequence of random numbers is based
on argument long. In the second case, the seed is the time in milliseconds at
which the new-expression was evaluated.

Use the first case when testing a program because you may need to repeat
an execution in order to help find errors. Use the second case when running so
that you always use a new seed and thus get a new sequence of random numbers.

Now, whenever a new random number is generated, use one of the follow-
ing function calls. There are several possibilities because one might want to gen-
erate sequences of random values in different types and ranges:

• random.nextBoolean() = a boolean value
• random.nextDouble() = a double d satisfying 0 ≤ d < 1
• random.nextFloat() = a float f satisfying 0 ≤ f < 1
• random.nextInt() = an int
• random.nextInt(n) = an int i satisfying 0 ≤ i < n

• random.nextLong() = a long

Class Random has other instance methods, but the ones discussed above will
be used most frequently.

5.6.3 Exercises with random numbers

E1. Write a function oneOrTwo that uses function Math.random to return a ran-
dom integer in the range 1..2. Test it.

E2. Function oneOrTwo produces either 1 or 2, randomly. One can think of 1 as
“heads” and 2 as “tails”, so we can think of a call of function oneOrTwo as sim-
ulating a flip of a coin. If we flip a coin 100 times, or 1,000 times, we would
assume that half the tosses are “heads” and half are “tails”. Write a program to
test whether oneOrTwo is really fair, in this sense. The program will call
oneOrTwo a certain number of times and report back how many of the tosses
were “heads” and how many were “tails”. Experiment with this program.

E3. Write a function to “throw a die (meaning one of a pair of dice)” —it should
produce an integer in the range 1..6.

E4. Write a program that throws a die n times (for some given n) and counts how
many times one roll is followed by exactly the same roll. E.g. the answer for the
7-roll sequence 3, 2, 2, 4, 4, 4, 3 is 3, since a 2 is followed by 2, a 4 is fol-
lowed by 4, and that 4 is followed by 4. After you test it, experiment with it.

E5. Write a program that rolls a die until a 6 is rolled. Print out how many rolls

5.6 Random numbers 195

were needed. Experiment with this program.

E6. Suppose an array b[0..51] (or a Vector, or a String of 52 characters) con-
tains 52 values, e.g. it could be a deck of cards. Write a procedure that will “shuf-
fle” b. You can do this as follows:

1. Swap b[0] and b[i], where i is a random integer in the range 0..51.
2. Swap b[1] and b[i], where i is a random integer in the range 1..51.
...

51. Swap b[51] and b[i], where i is a random integer in the range 50..51.

5.7 Class JLiveRead for keyboard input

The core Java language has no facilities for reading from the keyboard or doing
other input/output (I/O). Instead, all I/O is provided in the classes in package
java.io. But these classes are very “low-level”, forcing you to deal with read-
ing one character at a time or a line of characters at a time, and then you have to
write methods for interpreting what those characters are.

JLiveRead of the CD ProgramLive makes reading from the keyboard easi-
er by providing static methods for reading integers, double values, and other
items. In this section, we show how to use the methods of this class.

When running a Java program, the letters you type appear in the Java con-
sole. So, reading from the keyboard is often called “reading the Java console”.

To use the methods of class JLiveRead, you have to place file
JLiveRead.java in the directory for the program and make sure that it is com-
piled as part of the project (it will be, if the project contains call on its methods).

Suppose you want to read into a variable s an integer that the user will type
on the keyboard. To do this, use the assignment statement:

// Read and store in s an integer typed by the user
s= JLiveRead.readLineInt();

When this statement is to be executed, execution waits until the user has typed
an integer and pressed the enter key; the typed characters are placed in the Java
console. As soon as the enter key is pressed, the integer that was typed is used as
the value of the expression JLiveRead.readLineInt() and assigned to s.

If the user types anything else besides an integer (preceding and following
whitespace is okay), an error message appears and the user is prompted to type
in an integer.

Prompting the user
Generally, the user will not know that they must type an integer until they

are told. We say that the user must be “prompted” for the input. So, when input
is needed from the keyboard, a program generally prompts the user for it.
(Actually, DrJava prompts automatically for keyboard input, but this is part of
DrJava and not of Java itself.)

Obtain class
JLiveRead
from a footnote
for this activity
on Lesson page
1-5.

Activity
1-5.2

196 Chapter 5 Some useful classes

We change our program segment to prompt the user for keyboard input and,
as an example, print the square of the integer that was typed:

// Prompt the user for an integer, store it in s, and print its square
System.out.println("Please type an integer");

s= JLiveRead.readLineInt();

System.out.println(" square is " + (s*s));

Reading values of other primitive types
Class JLiveRead contains methods for reading a line of input that contains

values of other primitive types. In each case, the item read may be preceded and
followed by blank characters. There is also a method for reading the whole line
as a String. The methods are:

• readLineLong(): Read and return a long value.

• readLineFloat(): Read and return a float value.

• readLineDouble(): Read and return a double value.

• readLineNonwhiteChar(): Read and return the first char value that is not
whitespace.

• readLineBoolean(): The input may contain “t”, “true”, “f”, or “false”,
using lowercase or uppercase. Read it and return true or false, accordingly.

• readLineString(): Read and return a sequence of non-whitespace characters,
as a String.

One more useful method can be used to read in all the typed characters:

• readString(): Read and return the typed characters, as a String. The final
carriage return or line feed is not included.

Putting more than one value on a line
The methods discussed above force the user to type exactly one value before

hitting the return/enter key. For example, function readLineInt will complain
and ask you to type an integer again if you type the following before hitting the
return/enter key:

25 4.0 3

Class JLiveRead contains methods that read a single value from a line, per-
haps preceded by whitespace, leaving the rest of the line to be read later. These
methods are:

readInt() readLong()

readFloat() readDouble()

readWord()

5.7 Class JLiveRead for keyboard input 197

However, we advise against the use of the methods because using them may lead
to errors. We explain.

Suppose the user types a line shown above in a situation where the program
is expecting three ints. The user has made a mistake, since 4.0 is not an int.
Upon trying to read 4.0, function readInt prints an error message and asks the
reader to type the integer again, this time correctly. But then the rest of the line,
containing the integer 3, will probably be discarded along with the 4.0, and most
of what the user typed is thrown away and has to be typed again. It may be dif-
ficult for the user to remember what has to be typed and what does not.

Thus, allowing several items to be typed on one keyboard line makes recov-
ery from a typing error much more difficult, and, as we all know, it is easy to
make errors while typing. Thus, it is better to stick to the one-item-on-a-line
mode when dealing with keyboard input.

Self-review exercises

SR1. Open class JLiveRead in DrJava and compile it. Then type the following
expressions into the Interaction pane and evaluate them. During evaluation, a
box will appear into which you should type an appropriate value. Experiment
with making errors when typing values to see what happens.

JLiveRead.readLineInt()

JLiveRead.readLineBoolean()

JLiveRead.readLineNonwhiteChar()

JLiveRead.readLineString()

JLiveRead.readString()

SR2. Write and test a procedure to read two integers from the keyboard and print
their product.

SR3. Write and test a function to read two boolean values from the keyboard

198 Chapter 5 Some useful classes

Figure 5.4: GUI JLiveWindow

This instance of the GUI has four int fields and the
ready button. Two integers were typed in the first two
fields and the ready button was pressed, causing the
sum of the two integers to be displayed in the third
int field.

The GUI can have up to 7 int fields, 7 double
fields, and 7 String fields. When the ready button is
pressed, method buttonPressed is called. You can
change this method to do whatever you want.

and return their conjunction.

SR4. Write and test a function to read a double value and to return the floor
(integer part) of the value, as an int. If the value is outside the range of int,
return the maximum int value.

5.8 GUI JLiveWindow

GUI JLiveWindow (see Fig. 5.4) provides a window on your monitor with up to
7 int fields, 7 double fields, 7 String fields, and a “ready” button. Press the
ready button, and a method buttonPressed is called. In its original version, this
method places the sum of the integers in the first two int fields in the third int
field, but it can be rewritten to do anything you want. Activity 1-5.3 of this CD
provides a better introduction to this GUI than we can give here on paper.

For example, suppose you have written a function that changes a number of
seconds to an hour-minute-seconds format (e.g. 67 could be changed to the string
"0:1:7"). You can use GUI JLiveWindow to test this program. Change method
buttonPressed to read the first int field, call your function with that integer as
the argument, and place the result in the first String field. Then, test your func-
tion by repeatedly placing an integer in the first int field, pressing the ready but-
ton, and checking the answer that appears in the first String field.

The GUI can be used in real programs as well —wherever simple input or
output is required. It can be much easier to use than keyboard input.

The GUI consists of two classes, JLiveWindow and MyJLiveWindow.
MyJLiveWindow is the only one that you have to change to adapt the GUI to your
needs. In fact, you will have to change only methods buttonPressed and main.

Changing the number of fields in the GUI
Open file MyJLiveWindow.java in your favorite IDE or editor and look at

method main. You will see an expression that looks like this:

new MyJLiveWindow(4, 0, 0)

The first integer, 4, is the number of int fields; the second, 0, the number of
double fields; the third, 0, the number of String fields —which is what the GUI
in Fig. 5.4 has. Change these integers to any integer in the range 1..7. That is all
there is to defining the number of fields the GUI should have.

Method buttonPressed
Method buttonPressed is called whenever the ready button is pressed. Here

is the original body of the method:

int sum= getIntField(0) + getIntField(1);

setIntField(2,sum);

return null;

Get GUI
JLiveWindow
from a footnote
on lesson page
1-5. of the CD

Activity
1-5.3

5.8 GUI JLiveWindow 199

The assignment gets the values of the first two int fields and stores their sum in
sum. Here, you can see that the following expression has as its value the integer
that is in int field i (for i in the range 0..6 —the first field is numbered 0):

getIntField(i)

In the same way, it is easy to store a value in a field. The second statement,

setIntField(2,sum);

stores in int field 2 the value that is in variable sum. In general, the statement

setIntField(i,e);

stores the value of expression e in int field i, where expression i is in 0..6.
Methods also exist for accessing and changing the double and String fields:

getdoubleField(i)

getStringField(i)

setDoubleField(i,e);

setStringField(i,e);

Executing the GUI
Execution of the following call creates and shows the GUI window.

Thereafter, you can drag the window where you want, resize it, and use the fields
and ready button.

MyJLiveWindow.main(null);

An example
Consider the following method:

/** = the number of seconds n, but given in the form
hours:minutes:seconds. Precondition: n >= 0 */

public static String convert(int n) {

int hours= n / 3600;

int remainder= n % 3600;

return hours + ":" + (remainder / 60) +

":" + (remainder % 60);

}

To test this method, place it in class MyJLiveWindow, change it so that it has one
int field and one String field, and write method buttonPressed as follows:

/** Display value convert(first int field) in the first string field */

public Object buttonPressed() {

setStringField(0, convert(getIntField(0)));

return null;

}

200 Chapter 5 Some useful classes

We can now check many test cases by executing the program and repeatedly typ-
ing a test case into the int field, hitting the ready button, and checking the out-
put in the String field.

Self-review exercises

SR1. Fix MyJLiveWindow to have four int fields and four String fields. Fix
method buttonPressed so that it puts the integers 1, 2, 3, 4 in the four int fields
and the four strings "one", "two", "three", "four" in the four String fields.

SR2. Fix MyJLiveWindow to have one int field and one String field. Fix
method buttonPressed so that it puts in the int field the length of the string in
the String field.

SR3, Write a method with three parameters: a number of hours, minutes, and sec-
onds. The method should yield the total number of seconds given by the param-
eters. Test the method using GUI JLiveWindow.

5.9 Reading the keyboard and a file

The core Java language has no facilities for doing IO (input/output). Instead,
these facilities are provided in the API in package java.io. Here, we provide
enough information to allow you to read from the keyboard and from files.

The classes that will be used in this section are:

• InputStreamReader: An instance can read characters from the key-
board.

• BufferedReader: An instance can read from any input, a line at a time.
• File: An instance is attached to a file in some directory on a hard drive.
• FileReader: An instance can read characters from a File.
• JFileChooser: An instance is a dialog window in which the user can

navigate to a directory and choose a file.
• FileOutputStream: An instance can write bytes to a file.
• PrintStream: An instance has print and println methods for writing

ints, doubles, strings, etc.

The term stream is used for a sequence of data values that is processed —
either read or written— from beginning to end. When the data is being read, the
stream is called an input stream; when it is being written, the stream is called an
output stream.

Lesson
page 5-7

5.9 Reading the keyboard and a file 201

Warning. Only one object should be linked to the keyboard or a file at a time. For example, do
not have two BufferedReaders br1 and br2 linked to the keyboard and inter-
leave expressions br1.readLine() and br2.readLine(). It will not always
work, which is worse than something that never works.

5.9.1 Reading the keyboard

Unless your program is expecting input and contains instructions to read what
you type, your program will not respond to typing. Fixing your program to read
from the keyboard requires several steps, the first of which is to link to the key-
board.

Linking to the keyboard
Variable System.in, of type InputStream, represents standard input.

Standard input is usually the keyboard (although it can be set to some other input
source). So, we can view variable System.in as containing the name of an object
that is the keyboard.

System.in is a stream of information, and it needs a reader to read from it.
For this purpose, we use an instance of class InputStreamReader. To create an
InputStreamReader that is attached to the keyboard, use this statement:

InputStreamReader isr= new InputStreamReader(System.in);

Variable isr then contains the name of the instance that is attached to the key-
board, and its function isr.read() can be used to read from the keyboard. But
this function reads only one character at a time, and this can be slow and incon-
venient. Java provides a class BufferedReader that buffers the input: it reads
lots of characters at one time, saves them, and delivers them one line at a time.

To create a BufferedReader that reads from object isr, use this statement:

BufferedReader br= new BufferedReader(isr);

Variable br is now linked to the keyboard, and its function br.readLine can
be used to read the next line from the keyboard, e.g.

String s= br.readLine();

Evaluation of br.readLine() pauses until the user has typed the return/enter
key on the keyboard; then, it yields the string consisting of all characters that
were typed before the return/enter key was struck.

Handling IO errors
When reading input, problems may occur. The keyboard might get un-

plugged or break, something might go wrong inside your computer, etc. These
events cause exceptions, and Java forces you to deal with them.

We illustrate this using the procedure shown in Fig. 5.5. It will not compile
because the expression br.readLine() may cause an input-output exception to
happen (to be thrown). The syntax error message that is printed is:

Error: unreported exception java.io.IOException; must be
caught or declared to be thrown.

To make the procedure syntactically legal, remove the comment symbols

Activity
5-7.3

This material is
much easier to
grasp from
activities 5-7.1
and 5-7.2!

Activities
5-7.1, 5-7.2

202 Chapter 5 Some useful classes

that delimit the throws clause Throws IOException in the header of the method.
This signals that this method may throw an IOException. Now, this method is
syntactically correct, but the method that called this one may be syntactically
incorrect and will also need a throws clause, and so on.

The upshot of this is that if the statement br.readLine() causes an
IOException, the system will print an error message and terminate execution of
the program.

For a complete discussion of handling exceptions, see Chap. 10.

Extracting numbers
Assume that a line "-77" of keyboard input has been placed in String vari-

able line and that our task is to extract the integer from line and place it in int
variable i. Static function parseInt of wrapper class Integer will do the job:
execution of:

i= Integer.parseInt(line);

converts the string in variable line to an integer and stores the integer in vari-
able i.

The two statements to read in a line of keyboard input and extract the inte-
ger in it can be combined to avoid declaring the unnecessary variable line:

i= Integer.parseInt(br.readLine());

But there is a problem with function parseInt: it does not allow white-
space, like blank characters, to appear before or after the integer. Thus, evalua-
tion of this expression results in an error message and abortion of the program:

Integer.parseInt(" 35 ")

Remove the whitespace from the input using String function trim:

Integer.parseInt(" 35 ".trim())

Thus, we should read a line containing an integer, possibly with preceding

Activity
5-7.4

5.9 Reading the keyboard and a file 203

/** Read and print two lines from the keyboard. As written, it does not compile. Remove
the comment delimiters around the throws clause on the first line and it will compile. */

public static void readAndProcess () /* throws IOException*/ {

InputStreamReader isr= new InputStreamReader(System.in);

BufferedReader br= new BufferedReader(isr);

String line1= br.readLine();

System.out.println(line1);

String line2= br.readLine();

System.out.println(line2);

}

Figure 5.5: A procedure to read and print two lines from the keyboard

and following blanks, with this statement:

i= Integer.parseInt(br.readLine().trim());

The other wrapper classes have their equivalents of parseInt. For example,
to extract a double value from a string line use:

double d= Double.parseDouble(line.trim());

Iteration with input
You may want to read and process keyboard input lines until some stopping

condition is met, e.g. some line contains the word "quit". This kind of task is
usually done with a loop . If you know about loops, writing such a loop will be
easy. See Chap. 7 for a discussion of loops.

204 Chapter 5 Some useful classes

import java.io.*;

import javax.swing.*;

/** Illustrate use of class JFileChooser and reading a file */
public class FileChooserApp {

public static void main(String[] args) throws IOException {

BufferedReader br= getReader(); // A link to the user’s file
if (br == null) { return; }

// Read file br and print the length of each line
String s= br.readLine();

// { inv: s is last line read and lengths of lines before line s have been printed }
while (s != null) {

System.out.println(s.length());

s= br.readLine();

}

br.close();

}

/** Obtain a file name from the user, using a JFileChooser, and return a reader that
that is linked to it. If the user cancels the choice, return null */

public static BufferedReader getReader() throws IOException {

JFileChooser jd= new JFileChooser();

jd.setDialogTitle("Choose input file");

jd.showOpenDialog(null);

File f= jd.getSelectedFile();

if (f == null) { return null; }

return new BufferedReader(new FileReader(f));

}

}
Figure 5.6: Read lines from a file selected by user and print their lengths

5.9.2 Reading a file

Reading a file is more work than reading the keyboard because the file to read
must be chosen by the user. For this purpose, we suggest displaying a dialog
window in which the user can navigate to a folder and choose the desired file.
Such a task can be accomplished using an instance of class JFileChooser in
package javax.swing.

Figure 5.6 contains a program, which obtains a file from the user and then
reads the lines of the file and prints their lengths. We discuss it in two parts.

Obtaining a file from the user
Method getReader creates the BufferedReader that is attached to a file

chosen by the user. Whenever you have to write a program that will read from a
file selected by the user, use this method.

First, note that the header of function getReader contains a throws clause
because it may throw an IO exception.

Now examine the method body. Here are the first four statements:

JFileChooser jd= new JFileChooser();

jd.setDialogTitle("Choose input file");

jd.showOpenDialog(null);

File f= jd.getSelectedFile();

The first statement creates an instance of JFileChooser and stores it in
local variable jd. Attached to this instance is a dialog window on the user’s mon-
itor, which is not yet visible. The second statement set the title of the window so
that the user knows what the dialog box is for. The third statement makes the dia-
log window visible and then waits until the user has either selected a file name
or clicked the cancel button in the dialog window. The fourth statement obtains
an object of class File that represents the file the user chose —f will be null if
the user clicked the cancel button.

This is the standard way to obtain a file from the user.
Next, if f is null, the method returns the value null, as indicated in the

specification of the method. If f is not null, this statement is executed:

return new BufferedReader(new FileReader(f));

It creates an instance of class FileReader that is attached to file f, creates an
instance of BufferedReader that is attached to the instance of FileReader, and
returns the BufferedReader.

Obtain this program from ProgramLive and run it so that you can see what
the dialog window looks like.

Reading and processing the file
The first statement in method main calls method getReader to obtain a

BufferedReader that is linked to the user's file.

Get the pro-
gram in Fig.
5.6 from a
footnote on les-
son page 5-7.

Activities
5-7.5, 6-7.6

5.9 Reading the keyboard and a file 205

The next part reads the file and prints the line lengths, using a loop that
processes one line of a file at a time. There is a difference between reading a file
and reading the keyboard. If there are no more lines to read in a file, function
br.readLine() returns null. But there is no concept of the end of the keyboard,
so the method that reads a line waits until the reader has typed another line.

Note the last statement of the method body,

br.close();

which closes the file, making it impossible to read from it anymore with variable
br. In this program, it is not necessary to include this statement because the pro-
gram will terminate right after this statement anyway. However, in general, it is
a good practice to include it, just in case another part of the program attempts to
open and use the same file.

206 Chapter 5 Some useful classes

import java.io.*;

import javax.swing.*;

public class WriteExample {

/** Get an output file name from the user and print two lines on it */

public static void main(String[] args) throws IOException {

PrintStream ps= getWriter();

if (ps == null) {

System.out.println(" User canceled. Nothing was written.");

return;

}

// Print two lines on the file
ps.println(" This is the first line.");

ps.println(" This is the second line.");

System.out.println("File has been written.");

ps.close();

}

/** Obtain a file name from the user, using a JFileChooser, and return
a PrintStream that is linked to it. Return null if the user cancels */

public static PrintStream getWriter() throws IOException {

JFileChooser jd= new JFileChooser();

jd.setDialogTitle("Choose output file");

jd.showSaveDialog(null);

File f= jd.getSelectedFile();

if (f == null) { return null; }

return new PrintStream(new FileOutputStream(f));

}

}

Figure 5.7: Print two lines on a file chosen by the user

5.10 Writing and appending to a file

Figure 5.7 contains a complete program that obtains a file name from the user,
using a JFileChooser, and prints two lines on it. This has the same structure as
the one in Fig. 5.6, which reads a file, and it will need less discussion.

Obtaining a file name from the user
Method getWriter creates an instance of class PrintStream that is

attached to a file chosen by the user. Whenever you have to write a program that
will write a file chosen by the user, use this method.

The method stores a new JFileChooser in variable jd and gives it an
appropriate title. Then it calls method jd.showSaveDialog (instead of jd.show-
OpenDialog). This method opens a dialog window in which the user can navi-
gate to a directory and type in a file name. In the dialog window, file names are
grayed; the user cannot select an existing file to write. It is possible to set a
switch in the instance js that allows the user to select an existing file to over-
write, but this can be dangerous.

As in the case of method getReader, a File f is created once the user has
selected a file. If f is null, that means the user canceled the selection, and the
function returns null. Otherwise, it creates and returns an instance of class
PrintStream that is attached to the user’s file.

Writing the output file
Instance ps in method main has methods print(e) and println(e).

Argument e can be any expression. Its value is converted to a character repre-
sentation and appended to the file, with a line separator in the case of println.

In the example of Fig. 5.7, method main simply writes two lines to the file.
It then prints a message indicating that the file was written and closes the file.

Get the pro-
gram in Fig.
5.7 from a
footnote on les-
son page 5-8.

Lesson
page 5-8

5.10 Writing and appending to a file 207

/** Obtain a file name from the user, using a JFileChooser, and return a PrintStream that
is linked to it and that appends to the file instead of overwriting it.
Return null if the user cancels */

public static PrintStream getAppender() throws IOException {

JFileChooser jd= new JFileChooser();

jd.setDialogTitle("Choose file to append to");

jd.showOpenDialog(null);

File f= jd.getSelectedFile();

if (f == null) {

return null;

}

return new PrintStream(new FileOutputStream(f.getPath(), true));

}

Figure 5.8: Obtaining a PrintStream that appends to a file

Always call method close when finished with it.
I/O exceptions are suppressed by methods of class PrintStream. When you

are finished writing, you can check whether an I/O exception occurred by call-
ing function ps.checkError(); it returns true iff there was an I/O error.

Appending instead of overwriting
It is possible to append to a file instead of overwriting it. Figure 5.8 contains

a method, getAppender, which obtains the name of a file to append to from the
user and returns a PrintStream. Writing to this PrintStream will append to,
rather than overwrite, the file.

Here are the differences between getAppender and getWriter of Fig. 5.6:

• The title of the dialog window is changed to reflect the new task.
• Instead of creating a PrintStream using new FileOutputStream(f),

the expression

new FileOutputStream(f.getPath(), true)

is used. The first argument is not f itself but a String that contains its
name (i.e. the complete, absolute path to the file). The second argument,
true, indicates that the file should be appended to. A second argument of
false would cause the file to be overwritten.

In the dialog window that appears, the user cannot type a file name; they can
only select one to append to.

5.10.1 Exercises with files

In the following exercises, it is best to start with the appropriate class from Fig.
5.5, 5.6, or 5.7 and modify it.

E1. In the Interactions pane of DrJava, import java.io.*. Next, type the first
three statements of method readAndProcess of Fig. 5.5, which will read in one
line from the keyboard. Notice how DrJava gives you a place to type (in the
Interactions pane). Type in something. Now see what the value of variable line
is. You need DrJava from August 2003 or later.

E2. In DrJava, create a new class and place method readAndProcess of Fig. 5.5
in it. Compile the class and then test it by calling readAndProcess from the
Interactions pane. You need DrJava from August 2003 or later.

E3. Write (and test) a procedure that (1) obtains a (text) file from the user, (2)
reads its lines until a line with "END" on it is read (or until there are no more
lines to read), and (3) prints the number of lines read.

E4. Assume that each line of a file contains an integer, possibly surrounded by
blanks. Write (and test) a procedure that obtains the name of the file from the
user, reads the file, and prints the sum of the integers.

Get the func-
tion in Fig. 5.8
from a footnote
on lesson page
5-8.

208 Chapter 5 Some useful classes

E5. Write (and test) a procedure that compares two text files (which are obtained
from the user). For each line i for which they differ, print the line number and the
two lines.

E6. Write (and test) a procedure that (1) obtains the name of an output file from
the user and (2) writes the first 50 squares on that output file, one on each line.

E7. Write (and test) a procedure that (1) obtains the name of an input file from
the user, say the name is "xxx", (2) reads the file into a Vector, and (3) produces
an output file named "outxxx" that contains the lines of the input file but in
reverse order.

E8. Write (and test) a procedure that (1) obtains the name of a file that is to be
appended to (not simply overwritten) and appends a line containing "THIS WAS

APPENDED" to it.

5.11 Universal resource locators

URL stands for uniform resource locator. URLs are used on the internet to define
files and the protocols with which they should be processed. Here is an example
of a URL:

http://www.cs.cornell.edu/Courses/cs211/2001fa/index.html

In this section, we describe URLs, look at a class in the API package whose
instances maintain URLs, and show how to read the file given by a URL.

5.11.1 URLs

The URL

http://www.cs.cornell.edu/Courses/cs211/2001fa/index.html

consists of

1. An identification of a service or protocol (e.g. http);
2. A domain name or host (www.cs.cornell.edu), which is associated with a

computer that is attached to the internet; and
3. A path on that computer (Courses/cs211/2001fa/index.html).

A URL can have other components, Here, we discuss only a restricted form
of URL, which can be given as follows:

<protocol>://<domain-name><path>?<query>#<fragment>

Protocols
Here are the protocols one usually sees:

1. http: This stands for HyperText Transport Protocol, which is the most-

5.11 Universal resource locators 209

used protocol for accessing files over the internet. Generally, the files are
html files, but they could be any files, including text files, .jpg files, and
.gif files. A domain name must be given.

2. file: This is used for a file that is on the local computer. The domain name
is generally not present.

3. ftp: The File Transfer Protocol protocol provides for files and directories
of files to be transferred from one computer to another.

4. mailto: Used to bring up a window that can be used to send mail. The //
and domain name are omitted, and instead of a path there is an email
address, e.g. consider this URL: mailto:gries@cs.cornell.edu

Domain names, or hosts
The appearance of "//" in the URL signals the beginning of a domain name,

which is a name that has been registered as being assigned to or associated with
a particular computer. Here are examples of domain names:

1. www.cs.cornell.edu
2. www.cs.toronto.edu
3. www.datadesk.com

Domain names generally consist of a sequence of names separated by peri-
ods ".". It used to cost about $75 per year to register a domain name. The price
has dropped to between $10 and $75. Here is the URL for the web page
(http://www.icann.org/) for the company Internet Corporation For Assigned
Names and Numbers, which maintains the rules for domain names.

The internet started with domain names that ended in: .com (for commer-
cial), .org (organization), .gov (government), and .mil (military). Lately, new
ones were added, like .biz (business), .info (information), .net (internet), and
.name (for individuals) Also, any country can have a two-letter ending. Some
examples are .af (Afghanistan), .de (Germany), and .hk (Hong Kong). The
suffix .us exists for the United States, but it is not used much.

The domain-name part of a URL is often called the host —that name is used
later, so remember it.

Ports
A URL can optionally specify a port, which is the port number to which the

connection is made on the remote host machine. If the port is not specified, the
default port for the protocol is used instead. For example, the default port for
http is 80. The following example contains the port number 8080:

http://www.ncsa.uiuc.edu:8080/demoweb/url-primer.html

We do not deal with ports since they are usually not given in the URLs that we
deal with.

210 Chapter 5 Some useful classes

Absolute paths
The path of a URL is a path on the computer to the file that the URL

describes. For example,

/gries/Logic/Introduction.html

indicates that the hard drive of the computer whose domain name was given has
a folder (directory) gries; in that folder is a folder named Logic, and in that
folder is a file named Introduction.html.

The character / is used to separate entities on the path, regardless of the
operating system on the computer —Unix-like, Windows, or Macintosh.

If the file name is missing at the end (so that the last entity is a folder), then
a default file is chosen, usually index.html or index.htm. This default depends
on the computer on which the file resides (it can be changed). On some comput-
ers, we have seen the following defaults: default.html, default.htm,
home.html, and home.htm.

If the protocol is file, then the domain name is usually absent and the path
is the path of a file or folder on your hard drive. The form of the beginning of
such a path depends on whether a Unix-like, Windows, or Macintosh operating
system is being used. You can check this out on your own computer by loading
any html file that is on your hard drive into a browser like Netscape
Communicator or Internet Explorer and looking at the URL that is displayed.
Here are examples for the three kinds of systems:

1. Unix: /home/profs/gries/public_html/index.html
2. Windows: /C:/MyDocuments/test.html
3. Mac: /ProgramLive/Course/IC/web/ICweb.htm

Relative URLs
Within an html file, one can have a relative URL, as in:

href="people/faculty/faculty.htm"

The protocol and host are those of the current html file, and the path is assumed
to be relative to the folder in which the html file appears. One can use ".." in
the path to move up in the path of folders, as in all operating systems. For exam-
ple, if the current folder is /gries/Logic, then relative path ../NoLogic/-
test.html refers to the file /gries/NoLogic/test.html.

Fragments
The following URL has the fragment #chap1:

http://java.sun.com/index.html#chapter1

The fragment is often the name of a target within the file given by the URL,
but there are other uses for it. Technically, the fragment is not part of the URL.

5.11 Universal resource locators 211

5.11.2 Class URL

Package java.net contains class URL, which is used for dealing with URLs in
Java. An instance of class URL contains a description of one URL. It has methods
for getting components of the url and for reading the file named by the URL.

Constructors
Usually, one uses one of two constructors when creating a new URL. First,

the new-expression

new URL(s)

creates an instance for String s, which must be a URL according to the rules
given above. Second, suppose URL c describes a directory and we want to create
a URL for a file s that is within the directory, Use the following new-expression
to create it:

new URL(c,s)

For example, we might use the following:

URL dir= new URL("http://www.cs.cornell.edu");

URL file= new URL(dir, "gries/programlive/plive.html");

Both constructors throw a MalformedURLException if there is a problem.
Also, note that new URL(s) is equivalent to new URL(null, s).

The specification of the second constructor is quite detailed, indicating what
happens when both c and s contain protocols and when s begins with "/". Please
look at the specification in the API package for details.

Getter and toString methods
Class URL contains a number of methods for accessing the different parts of

the URL that it describes. Here are some:

getFile() the file name, as a String
getHost() the host, or domain name, as a String
getPath() the path, as a String
getPort() the port number, as an int (-1 if port not set)
getProtocol() the protocol, as a String

As you might expect, class URL has a toString method, which produces a
String representation of the URL that it describes.

5.11.3 Reading the file given by a URL

A search engine like google seems to find appropriate files for a query almost
instantaneously. The search engine is able to perform so quickly because infor-
mation about web pages is already stored on its computers. Many computers in

212 Chapter 5 Some useful classes

a search-engine company do nothing but browse the internet all day long, look-
ing for new html files, extracting information from new and old files, and saving
this information in a form that allows them to answer queries quickly. Google,
for example, has 30,000-40,000 computers networked together, not only for
answering your queries but for browsing the internet.

Thus, there is the need to read a file given by a URL. Figure 5.9 gives a
method that you can use in a Java program to read such files. Here is how it
works, assuming that variable url contains a URL:

1. The method call url.openStream() opens a connection to the file given
by URL url. This connection is in the form of an object of class
InputStream, which is stored in variable is.

2. An InputStreamReader isr is created, which can read the file one char-
acter at a time.

3. A BufferedReader is created and returned, which can read one line of the
file at a time.

Suppose this statement is executed:

BufferedReader br= getReader(url);

Then, the lines of the file can be read and processed one at a time, just like the
lines of any other file connected to a BufferedReader. Remember, a line of the
file is read and stored in variable line using

line= br.readLine();

5.11 Universal resource locators 213

/** = a reader for URL url (which must not be null). If url is null, if the protocol
is not http or file, or if there is an IO error, null is returned. */

public static BufferedReader getReader(URL url) {

if (url == null)

return null;

if (!url.getProtocol().equals("http") &&

!url.getProtocol().equals("file")) {

return null;

}

try {

InputStream is= url.openStream();

InputStreamReader isr= new InputStreamReader(is);

return new BufferedReader(isr);

} catch (IOException e) {

return null;

}

}

Figure 5.9: Print two lines on a file chosen by the user

Chapter 6

Reference on Primitive Types

OBJECTIVES

INTRODUCTION

A type describes a set of values together with operations on them. For example,
mathematical type integer describes the set of all integers together with opera-
tions like addition + and multiplication *. Each variable in a Java program has a
type, which defines the values that can be associated with the variable. Each
expression has a type, which depends on the type of its operands.

Java has two kinds of types: primitive types and class types. Primitive types
are built into Java. A class type, or simply class, is defined in a program, by a
class definition. In this chapter, we describe the primitive types.

Below, we list the primitive types of Java, along with the set of values in
them and the amount of memory used to hold their values.

Type Range of values Memory used
byte -128..127 1 byte (8 bits)
short -215..215-1 2 bytes (16 bits)
int -231..231-1 4 bytes (32 bits)
long -263..263-1 8 bytes (64 bits)

float -3.4028235E38 to -1.4E-45 4 bytes (32 bits)
1.4E-45 to 3.4028235E38

double -1.7676931348623157E308 to 0 8 bytes (64 bits)
0 to 1.7676931348623157E308

char Unicode characters 2 bytes (16 bits)

boolean false, true 1 byte

• Provide a reference on Java’s primitive types.

216 Chapter 6 Reference on primitive types

The types are: the integral types (byte, short, int, long, and char), the
floating point types (float and double), and type boolean. A beginner needs to
look only at types int, double, and boolean.

6.1 Type int

The values of type int are the integers in the range:

-2147483648..+2147483647, or -231..231-1.

A value of type int occupies four bytes of memory.
Use the following constants to access the minimum and maximum values of

class int:

Integer.MIN_VALUE Integer.MAX_VALUE

int literals
The conventional representation of integers, like 108 and 0, are called liter-

als in Java. Such literals are expressions of type int, and they denote the obvi-
ous integer values. For example, adding 108 and 9 gives the decimal value 117:

System.out.print(108 + 9) // Prints 117

Conventionally, in mathematics, a decimal integer can have leading zeros,
so 10, 010, and 0010 are equal. In Java, however, they are different! A leading
zero means that the octal, or base 8, number system is being used, so that 10 and
010 represent different integers.

Designers of programming languages should not create notations that con-
flict with tradition, for they make for confusion and wasted time.

The int operations
The int operations are negation, unary addition, addition, subtraction, mul-

tiplication, division, and remainder. Given int operands, they produce an int.
We describe these operations assuming that E, E1, and E2 are int expressions:

• + E is unary addition. Its value is the value of E.

• - E is conventional negation, or unary minus. Its value is the value of E
with its sign changed (from + to - or from - to +).

See a footnote
on lesson page
6-2 for the
octal number
system and for
octal and
hexadecimal
int literals.

Activity
6-2.1

Overflow! The largest int value is 2147483647. The value of 2147483647+1 is not 2147483648
but -2147483648! When the result of an int operation is outside the range of
type int, overflow occurs, and the answer obtained is not what you expect. The
answer is determined by the fact that integers are represented in twos-comple-
ment notation, which is outside the scope of this book. You will not be given a
warning when calculated values are outside the range of int and your answers
are not correct.

• E1 + E2 is conventional addition, e.g. 4 + 10 evaluates to 14.

• E1 - E2 is conventional subtraction, e.g. 4 - 10 evaluates to -6.

• E1 * E2 is conventional multiplication, e.g. 4 * 10 evaluates to 40.

• E1 / E2 is unconventional division. To compute its value, compute con-
ventional division and throw away the fractional part of the result to yield
an integer. For example,

10 / 2 evaluates to 5
10 / (-2) evaluates to -5
13 / 3 evaluates to 4 (i.e. the integer part of 4.333...)
14 / 3 evaluates to 4 (i.e. the integer part of 4.666...)
13 / (-3) evaluates to -4 (that is, the integer part of -4.333...)
14 / (-3) evaluates to -4 (that is, the integer part of -4.666...)

Note that for E1 < 0 , E1 / E2 = -(E1 / E2).

• E1 % E2 is the remainder operation. For E1 ≥ 0 and E2 > 0, E1 % E2 is the
remainder when E1 is (conventionally) divided by E2. For example,

6 % 3 evaluates to 0
7 % 3 evaluates to 1
8 % 3 evaluates to 2

For E1 ≥ 0 and E2 < 0, E1 % E2 = E1 % -E2.
For E1 < 0, -E1 % E2 = -(E1 % E2).
It is an error if E2 = 0 (an ArithmeticException occurs).

6.1 Type int 217

Watch out for = versus ==. A worldwide mathematical convention is that = denotes equality: b
= c evaluates to true or false depending on whether b and c have the same
value or not. Java, following C and C++, has gone against this mathematical
convention, using == for equality and = for the assignment statement. This one
affront to convention has caused more misunderstanding, confusion, and eco-
nomic loss than any other notational choice.

Remainder versus modulo. In math, the value x mod y, or x modulo y, is the non-negative
remainder r that arises from dividing x by y. The value x mod y satisfies:

x = y * q + r and 0 ≤ r < y (for some quotient q, which is unique)

For x ≥ 0, x % y and x mod y are the same. Consequently, many people call % the
mod operator. But % and mod differ when x is negative. For example:

-7 mod 5 = 3, but -7 % 5 = -2

For x < 0, % and mod are related by the formula:

x mod y = x % y + y

Java has the arithmetic relations <, <=, >, and >= on values of type int. They
yield values of type boolean. For example, 1 < 2 evaluates to true and 2 <= 1

evaluates to false.
The operators == and != denote equality and inequality: 1 == 2 is false and

1 != 2 is true.

Precedence and associativity
One can always fully parenthesize expressions to make absolutely clear in

which order the operators are to be evaluated. For example, in the fully paren-
thesized expression (5 + 5) * ((5 / 5) % 6), the order of evaluation is: the addi-
tion, the division, the remainder, and the multiplication.

However, writing so many parentheses can be a pain. To reduce the number
of parentheses required in many expressions, mathematical conventions assign
precedences to operators, which indicate the order of evaluation. For example,
negation has precedence over * and * has precedence over +. Thus, in the expres-
sion –10 + 4 * 2, first the negation is performed, then the multiplication, and
finally the addition. If two operators with different precedences appear next to
each other, the one with the higher precedence is evaluated first.

The precedences of all int operators are as follows, with the highest first:

1. negation, or unary minus.
2. * and / and %, with the same precedence.
3. + and –, with the same precedence.

If two operators with the same precedence appear next to each other, the
associativity of the operators determines which is evaluated first:

• Unary + and unary – are right associative, which means that they are
evaluated right to left. For example, –––5 is equivalent to –(–(–5))).
• The binary operators +, –, *, /, and % are left associative, which means
that they are evaluated left to right. For example, the expression 5 – 6 –
3 is an abbreviation for the expression (5 – 6) – 3. This is different from
5 – (6 – 3). So you really have to know whether an operator is left asso-
ciative or right associative when evaluating (or writing) an expression.

6.2 Types byte, short, and long

6.2.1 Types byte and short

The values of type byte and short are the integers in these ranges:

byte: -128..127, or -27..27-1.
short: -32768..32757, or -215..215-1.

A value of type byte occupies one byte; a value of type short, two bytes.
The following constants give the minimum and maximum values of these

types:

218 Chapter 6 Reference on primitive types

Byte.MIN_VALUE Short.MIN_VALUE

Byte.MAX_VALUE Short.MAX_VALUE

Literals of type byte and short
There are no literals of types byte or short. However, if you use an int lit-

eral in a place where a byte (or short) value is required, and if the value is in
the range of type byte (or short), it will be accepted. For example, the first
statement below is legal, but the second is illegal because 128 is not in the range
of type byte:

byte b1= 127; // legal
byte b2= 128; // illegal, because 158 is too big

Operations of type byte and short
There are no operations of type byte or short. Instead, the following hap-

pens. Suppose b1 and b2 are of type byte. Then the operation b1+b2 is evaluat-
ed as follows:

1. Widen the values of b1 and b2 to type int.
2. Add the two values using int addition.

This means that any expression with an operation that is assigned to a byte or
short value has to be explicitly narrowed (see Sec. 6.3). Here is an example:

b1= (byte) (b1 + b2);

One might well ask why one would ever use types byte and short —why
not always use int? Suppose one has a large collection, perhaps 1,000,000 val-
ues, each in a small range. Perhaps each is a day of the week, or the day of a
month, or the temperature during the day in Ithaca, NY. Stored as ints, they
require 4,000,000 bytes; stored as bytes, they require only 1,000,000. So, for
reasons of economy of space, types byte and short can be useful.

6.2.2 Type long

The values of type long are the integers in the range:

-9223372036854775808 .. +9223372036854775807, or
-263 .. 263 - 1.

A value of type long occupies eight bytes of memory.
The following constants give the minimum and maximum values of type

long:

Long.MIN_VALUE

Long.MAX_VALUE

6.2 Types byte, short, and long 219

long literals
A sequence of digits is automatically an int value, and if it is too large to be

in the range of int, the program in which it appears will not compile. For exam-
ple, the following is syntactically incorrect even though the integer in it is in the
range of type long:

long x= 2147483648;

To make an int literal into a long literal, append L to it (either upper case
or lower case), with no whitespace before the L. The following initializing dec-
laration is syntactically correct:

long x= 2147483648L;

Operations of type long
The operations of type long are similar to those of type int. They are: nega-

tion, unary addition, addition, subtraction, multiplication, division, and remain-
der. Given long operands, they produce a long result. See Sec. 6.1 for a descrip-
tion of the operations and Sec. 6.3 for a discussion of casting.

6.3 Casting among integral types

Every byte value is in the range of short, every short value is in the range of
int, and every int value is in the range of long. We can depict this as follows:

We say that each type is narrower than the types to its right in this diagram
and wider than the types to its left. For example, short is narrower than long
and long is wider than short.

If an operand is supposed to be of a certain type but an expression of a nar-
rower type appears there, Java will promote it to the required type. For example,
suppose variable b is of type byte and the expression b + b is to be evaluated.
Types byte and short have no operations. The addition is an int addition. Each
operand is promoted from byte to int, the int addition is performed, and the
value of the expression has type int.

This, then, shows how byte and short values can be used even though no
operations —except conversions to other types— are defined on them.

Suppose byte variable b contains the value 9. The assignment

b= (b + 1);

is syntactically illegal because an int value cannot be assigned to a byte vari-
able. But in this case, we know that the value of b+1 is in byte's range, and we
would like to store that value in b.

In this situation, we precede the expression (b+1) by keyword byte
enclosed in parentheses:

byte short int long

Activities
6-2.3..4

220 Chapter 6 Reference on primitive types

b= (byte) (b + 1);

Prefix operator (byte) is called a cast. It casts or converts the type of the expres-
sion to type byte. Similarly, we can use the casts (short), (int), and (long).

Widening casts —casts that convert from a narrower type to a wider type—
are unnecessary because Java promotes values to a wider type when needed.

Narrowing casts —casts that convert from a wider type to a narrower type—
must always be written explicitly because Java will never automatically convert
to a narrower type because it may lose information.

Identity casts, like (int)5, are also possible, but there is no need for them.

Casts have higher precedence than binary operators
A cast like (byte) has higher precedence than operators like addition and

multiplication. For example, consider this assignment:

b= (byte) b + 1; // illegal

The assignment is equivalent to:

b= ((byte) b) + 1; // illegal

Thus, the addition is an int addition and produces an int result, which can-
not be assigned to a byte, so the assignment is syntactically illegal. The assign-
ment statement should be written this way:

b= (byte) (b + 1); // legal

6.4 Floating-point types double and float

6.4.1 Type double

The values of type double are numbers that can have a fractional part, like -
.000045 and 35.4. You can view these as the so-called “real numbers”, but you
cannot represent all real numbers exactly. For example, the number 1 / 3 =

.333333… has an infinite number of 3’s in it, so, because a double value occu-
pies a finite amount of space (eight bytes), the number 1 / 3 cannot be repre-
sented exactly in type double. Similarly the square root of 2 and pi, the ratio of
the circumference of a circle to its diameter, cannot be represented exactly in
type double. Type double serves only as an approximation of the real numbers.

We give you enough information so that you can write programs that use
type double. However, to really use the type well, you need to know more than
we can explain in this book. A later course, perhaps in numerical analysis, will
explain all the nuances of type double.

Literals of type double
There are three forms of double literal:

Lesson pages
6-3 and 6-4
discuss type
double.

6.4 Floating-point types double and float 221

1. A decimal number with a decimal point in it.
Examples: 1.34 and 3. and 0.23333.
Due to the way literals are implemented, the value of a double literal may

be only an approximation to the corresponding real value.

2. A number in scientific notation: a decimal number (the period . is option-
al), followed by e or E , followed by a (possibly signed) integer.

Examples: 1.32e20 and 2.1E0 and 1E-5 and 3.14e62.
The value of a double literal mEi is the value of m with its decimal point

moved i places to the right (if i is positive) or left (if i is negative). For
example, 5.0e–5 is equivalent to .00005.

3. An int literal or a double literal, as in points 1 and 2 above, followed by
d or D. Examples: 1D and 1.2d and 1.3e-30d and 24E20D.

Scientific notation, used in many scientific fields, helps to express numbers
that would otherwise be infeasible to express. For example the googol, a name
coined by Milton Sirotta, a nine-year old, in 1955 is the number consisting of 1
followed by 100 zeroes, 1e100. Mathematicians would write this as 10100. The
width of a human hair is approximately 750,000 angstroms or 7.5e-7 meters.

Each double literal must be in the range of the type. If you type a literal that
is outside its range, your program is syntactically incorrect and will not compile.

Two constants give the largest and smallest positive double values:

Double.MAX_VALUE: 1.7976931348623157E308

Double.MIN_VALUE: 4.9E–324

In addition, three other constants represent other “values” of type double:

1. Double.NaN, meaning “not a number”. Division by 0 produces this value.
2. Double.POSITIVE_INFINITY is produced when the exponent of a posi-

tive number gets too big.
3. Double.NEGATIVE_INFINITY is produced when the exponent of a nega-

tive number gets too big.

The range of the exponent is -324..308.

Operations of type double
The basic arithmetic operators on type double work as expected:

• –: Negation. e.g. –3D evaluates to -3.0.

• +: Addition. e.g. 420. + 2D evaluates to 422.0.

• –: Subtraction. e.g. 42E1 – .2E1 evaluates to 418.0.

• *: Multiplication. e.g. 42E1 * .2E1 evaluates to 840.0.

• /: Division. e.g. 1D / 3D evaluates to 0.3333333333333333.
Division 0D/0D produces the value Double.NaN, meaning “Not a

222 Chapter 6 Reference on primitive types

Number”, and from then on your results are garbage. Division x / 0D

where x is nonzero produces either Double.POSITIVE_INFINITY or
Double.NEGATIVE_INFINITY, and from then on your results are garbage.
Do not divide by 0, except for fun.

• %: Remainder. e.g 5.2 % 5 evaluates to 0.20000000000000018. (You
would expect it to evaluate to 0.2, but roundoff error is involved.)

The arithmetic relations <, <=, >, and >= can be used on values of type dou-
ble. For example, 1.3241 < 1.3241001 evaluates to true.

The operators == and != can also be used with double operands. However,
these operators are rarely used because double values are only approximations.
Rather than checking for equality, one usually checks whether two double val-
ues are “close enough” —i.e. whether their absolute difference is small enough.

Precedence and associativity of double operators
The double operators have the same precedence and associativity properties

as their int counterparts. See Sec. 6.1.

Discussion
Type double is not as simple and straightforward as the above introduction

might indicate. This is because double numbers are only finite approximations
to real numbers. For example, the value of Math.PI, the closest possible approx-
imation to the ratio of the circumference of a circle to its diameter, is

3.141592653589793

but actually the fractional part of this ratio is not finite but goes on forever. It
does not even repeat (e.g. the rational number 1 / 4 can be written as .25000...;
the fraction consists of a non-repeating part 25 followed by a part, 0, which
repeats forever).

Further, literals (like 3.141592653589793) are written in decimal, but they
are stored in the computer in binary, and the conversion from decimal to binary
is another source of error.

Finally, double operations cannot be exact. For example:

(1D / 48D) * 48D is printed as 1.0, but

(1D / 49D) * 49D is printed as 0.9999999999999999.

So these two expressions are not equal in double arithmetic. Run this loop below
and analyze its output to see some of the approximations that go on. Because
double values are only approximations, do not write a loop whose loop counter
is a double.

6.4 Floating-point types double and float 223

// An example of inexact results and rounding:
System.out.print("inexact results with float: ");

for (int i= 0; i < 1000; i= i + 1) {

double z= 1.0D / i;

if (z * i != 1.0D) {

System.out.print(" " + i);

}

}

A complete discussion of double numbers is beyond the scope of this book.
For more information about double, look at the specification of Java and turn to
more advanced books on programming and numerical analysis.

6.4.2 Type float

Type float is similar to type double, except that a float value occupies four
bytes instead of eight. Its negative and positive values are:

-3.4028235E38 to -1.4E-45
1.4E-45 to 3.4028235E38

In most situations, type double is used and not float because the use of
double gives much more accuracy. However, when space is at a premium and
accuracy is not important, use float.

float literals
To change a double literal (that does not include d or D) into a float literal,

follow it (with no separating whitespace) by a lower case or upper case F. For
example, 3.0 and 5D are double literals, but 3.0F and 5F are float literals.

Operations of type float
The operations of type float are similar to those of type double. They are:

negation, unary addition, addition, subtraction, multiplication, division, and
remainder. Given float operands, they produce a float result. See Sec. 6.1 for
a description of the operations and Sec. 6.6 for a discussion of casting.

6.5 Type char

Type char has as its values the set of characters that you can process in a Java
program.

The constants of this type, called literals of type char, are single characters
enclosed in single-quote marks, e.g. 'A' and ';'. A sequence of these characters
enclosed within double quotes " form a literal of class String. For example,
String literal

"A;a"

Activity
13-7

224 Chapter 6 Reference on primitive types

contains the characters 'A', ';', and 'a'. If you understand the char literals, you
know what you can use to make String literals.

How do you write the character ' in a Java program? You cannot write '''.
Instead, write '\''. The backslash \ is called the escape character, and the
sequence \' is the escape sequence that is used to denote a single quote. Figure
6.1 lists the more important escape sequences that you can use in Java.

There is a third kind of char literal, the unicode character, like '\u0041'.
Unicode contains representations of almost all alphabets of the world. You do not
have to know about Unicode now, and we do not describe it here. For informa-
tion on it and the older 8-bit ASCII character-set representation, look at the CD.

There are no operations on type char (other than casts).

Type char is an integral type
Type char is actually an integral type, which means that one can convert a

value of type char into an integer and back again. Recall from Sec. 6.3 the dia-
gram concerning narrower and wider integral types:

Below, we show the same kind of diagram, which includes type char:

Thus, char is narrower than int.
If you cast a char value to int, you get the integer that represents it. If you

cast an int value to char, you get the char that it represents. For example:

(int) 'A' equals 65
(char) 65 equals 'A'

Since char is an integral type, it is easy to write loops that sequence and process
a range of characters, for example, all the lower-case letters 'a'..'z'. The CD
contains activities that show you how to do this.

6.6 Casting among primitive types

In Sec. 6.3, we introduced casting among integral types. In Sec. 6.5, we dis-
cussed the fact that type char was an integral type and showed how to cast from
char to int and back. In this section, we complete the discussion on casting by

Activities
6-5.3..4

char int long

byte short int long

Activity
6-5.2

Lesson page
6.5 discusses
the ASCII and
Unicode char-
acter sets.

6.6 Casting among primitive types 225

character escape seq. character escape seq.
backslash \ \\ carriage return \r

double-quote " \" tab \t

single-quote ' \' form feed \f

new line \n backspace \b

Figure 6.1: Escape sequences

showing that you can cast from integral types to floating point types and back.
The following diagram shows one of the narrower-wider hierarchies begin-

ning with byte. A type is narrower than the types to its right and wider than the
types to its left.

A second diagram shows how type char enters into the picture.

An expression of one type may be promoted to a wider type automatically if
it appears in a context where the wider type is required. But all narrowing con-
versions must be given explicitly using a cast. A cast, as explained in Sec. 6.3, is
a prefix operator of the form (type). Examples are (double) and (char).

Casting to a narrower type may result in garbage if the value being cast is
not in the range of the type to which it is being cast.

6.7 Type boolean

In Java, primitive type boolean describes the set of two values false and true
(called literals), together with the following operations on them: negation !; con-
junction (and) &&; and disjunction (or) ||. The word boolean comes from the
name of George Boole, a famous mathematician in the 1800s who founded the
area known as logic.

A boolean expression is an expression whose evaluation produces either
false or true. For example, arithmetic relations like x < y and b != c are
boolean expressions. If int variables x and y contain 6 and 4, respectively, then
x < y evaluates to false because 6 is not less than 4.

Boolean expressions are used as the conditions of if-statements and loops.
However, one can also assign boolean expressions to variables, as in:

boolean isLess;

isLess= x < y;

Boolean operators
We now discuss five boolean operators. We use variables b and c as their

Lesson page
6.6 contains a
complete
description of
type boolean.

char int long float double

byte short int long float double

226 Chapter 6 Reference on primitive types

b c | !b b && c b || c b == c b != c

--

t t | f t t t f

t f | f f t f t

f t | t f t f t

f f | t f f t f

Figure 6.2: Defining boolean operators in a truth table. t and f represent true and false

operands, although their operands could be any boolean expressions:

• !: Not or negation: !b yields true if b is false and false if b is true.
The sign ! is the exclamation point; it is often read as bang.

• &&: And or conjunction: b && c is true only if both b and c are true; oth-
erwise, it is false. Operands b and c are called the conjuncts of &&.

• ||: Or or disjunction: b || c is true if either b or c (or both) is true;
otherwise, it is false. Operands b and c are called the disjuncts of ||.

• ==: Equality or equivalence: b == c is true if b and c evaluate to the same
value (either false or true); otherwise, it is false.

• !=: Inequality or inequivalence: b != c has the same value as !(b == c).

Truth tables for the boolean operators
The values of the boolean operations can be defined using the truth table

shown in Fig. 6.2. To save space, we use t for true and f for false). This truth
table defines the values of all the operations for all possible values of their
operands. Each row contains, in its first two columns, a pair of values for the
possible operands b and c. There is one row for each combination. Choose a
combination of values for operands b and c, choose a column that has an expres-
sion (for example, b || c) in the top line, and the value in that row-column entry
is the value of the expression with those operands.

Precedences of boolean and arithmetic operators
One can mix arithmetic and boolean operations in an expression. Consider,

for example, the expression

x < y && y < z

In order to understand what the expression means, one has to know the relative
precedences of its operators. Figure 6.3 gives the precedences of operators.

Short-circuit evaluation
Consider evaluating this expression in a state in which n is 0:

n != 0 && 10 / n > 2

6.7 Type boolean 227

Highest: Unary ops: + - ++ -- !

Binary arithmetic ops. * / %

Binary arithmetic ops. + -

Arithmetic relations: < > <= >=

Equality relations: == !=

Logical and: &&

Lowest: Logical or: ||

Figure 6.3: Table of operator precedences

The first operand, n != 0, evaluates to false. Since && with a false operand
evaluates to false regardless of the value of the other operand, evaluation of the
expression terminates with the value false —without evaluating the second
operand.

Now evaluate the expression but with the operands of the conjunction
exchanged (in a state in which n is 0):

10 / n > 2 && n != 0

Since n is 0, evaluation of 10 / n causes execution of the program to abort.
Division by 0 is not allowed.

Thus, changing the order of the operands in a conjunction can change the
value of the conjunction.

Evaluation of a conjunction b && c is done using short-circuit evaluation: if
the first operand b is false, the result false is obtained without evaluating the
second operand.

We can give a definition of && using a non-Java “conditional expression”:

b && c is equivalent to: (if b then c else false)

which has the meaning: if b is true, then the result is whatever c is; otherwise,
the result is false. Actually, Java has such a conditional expression with a dif-
ferent notation, and we can define b && c as:

b && c is equivalent to: b ? c : false

In a similar fashion, disjunction || uses short-circuit evaluation; it is defined as:

b || c is equivalent to: b ? true : c

Short-circuit evaluation is used to protect an operation that might be unde-
fined in some states from being evaluated in those states. You have seen one
example of this: protection against division by 0. Another operation that may
need protection is referencing an element of an array because the subscript may
not be in the range of the array. A third situation is protection against referring to
a field of a nonexistent object. Here are the schemas for these boolean expres-
sions:

if (n != 0 && (boolean expression involving division by n)) …
if (n < b.length && (boolean expression involving b[n])) …
if (obj != null && (boolean expression involving obj.f)) …

228 Chapter 6 Reference on primitive types

Do not use | and &. Java has two “bit” operators, | and &, which in many situations give the same
result as || and &&. However, they are not evaluated in short-circuit mode. For
example, evaluation of n = 0 | x / 0 = 5 causes a division-by-zero exception,
while evaluation of n = 0 || x / 0 = 5 does not. The moral of this story is: stay
away from | and & and use || and &&, unless you really are in a situation where
| or & are required.

Properties of boolean operators
Sometimes, we want to manipulate a boolean expression to put it in anoth-

er form. For example, we can replace an expression

!(x <= y || y <= z)

by the simpler expression

x > y && y > z

Manipulating boolean expressions in this fashion requires knowing the
properties of the operators. Many of these properties are similar to those of arith-
metic operators. For example, ||, like +, is associative: x || (y || z) = (x || y)
|| z.

The marks of a Boolean tyro
Suppose a program uses a boolean variable atHome and this variable is to be

tested in an if-condition. It is common for tyros to use an if-statement with the
condition

atHome == true

You may be wondering what a tyro is. It has nothing to do with the word
tyrant. Also, it is not a greek fast food delicacy, a sloppy beef-lamb thing
wrapped in pita bread; that is a gyro. A tyro is a neophyte, a person who is famil-
iar with the rudiments of a subject but lacking in practical experience.

But back to programming in Java. The more experienced programmers real-
ize that b == true is equivalent to b. That is one of the simple properties of oper-
ator equivalence. So they write the if-statement with a much simpler condition:

atHome

Similarly, the tyro will use the expression atHome == false, while the expe-
rienced programmer will use the simpler !atHome.

Another mark of the tyro is this if-statement:

if (atHome || atWork)

b= true;

else b= false;

The pro would instead write a single assignment statement whose righthand side
is the same as the condition of the if-statement:

b= atHome || atWork;

There is nothing wrong with being a tyro in the field of programming. After
all, experienced programmers were once tyros, too. But tyros often do not want
others to know that they are tyros. If you do not, stay away from the marks of a
boolean tyro.

Activity
6-6.4

Lesson page 6-
6 discusses
boolean proper-
ties.

6.7 Type boolean 229

This part covers additional Java constructs:

• Loops.
• Arrays.
• Exception-handling constructs.
• Packages.
• Interfaces.
• Nested and inner classes.

These topics are largely independent and can be studied at different
times. For example, loops can be studied before the chapters on classes
and subclasses. Arrays are best studied after loops since many algorithms
that deal with arrays use loops.

The short chapter on packages is best studied quite early.
Interfaces and nested and inner classes should be studied after

classes and subclasses.

Part II

Other Java Constructs

Chapter 7

Loops

OBJECTIVES

INTRODUCTION

During execution, it is often necessary to repeat a statement many times. For
example, consider printing the integers 0..n. You cannot program this without the
ability to repeat a print statement an arbitrary number of times.

Java has three “repetitive” statements, called loops, that call for repeating a
statement. Here, we study two of them: the while-loop and the for-loop.

Knowing how loops work is not the same as being able to write them effi-
ciently and correctly. Loops are a wonderful source of bugs, and you can waste a
great deal of time writing incorrect loops and trying to fix them. We present a
methodology that will reduce the overall amount of time you spend writing loops.

7.1 The while-loop

7.1.1 Syntax and semantics of while-loops

Consider a sequence of statements to print the numbers 22, 32, and 42:

System.out.println(2 * 2);

System.out.println(3 * 3);

System.out.println(4 * 4);

This task uses three statements. To print 100 squares in this manner would require
100 statements. But because of the repetitive nature of this task, it can be written
in a shorter fashion using a Java statement called the while-loop. Here is a Java
segment that contains a while-loop to perform this task:

Activity 7-1.1
covers the
same material
but with a dif-
ferent loop.

• Study two repetitive statements: the while-loop and the for-loop.
• Learn how to develop and understand loops

234 Chapter 7 Loops

// Print the squares of 2, 3, and 4
int i= 2;

while (i != 5) {

System.out.println(i * i);

i= i + 1;

}

The while-loop consists of:

• The keyword while.
• The loop condition i != 5, within parentheses.
• The repetend of the loop: the block { … }.

The loop condition can be any boolean expression, and the repetend can con-
tain any sequence of statements. Repetend means “the thing to be repeated”.
Note that the statements within the block are indented. This follows the conven-
tion that subparts of a statement are indented.

Execution of a while-loop can be described using the following flow chart:

According to the flow chart, execution begins by evaluating the loop condition.
If it is false, then execution of the loop terminates; if true, the repetend is exe-
cuted, and the process repeats, beginning with the test of the loop condition.

Each execution of the repetend is called an iteration of the loop. The first
iteration is iteration 0, the second is iteration 1, and so on. If the loop condition
is false initially, then zero iterations are performed during execution of the loop.

7.1.2 Tracing execution of a loop

Generally, when executing a program by hand, we draw each variable as a named
box. When executing an assignment to x (say), we cross out the old value of x
and put in the new one. However, when first learning about loops (and, at times,
when looking for a hard-to-find error), it is helpful to draw the variables in a way
that exposes the order in which the assignments were made. We call this a tim-
ing diagram. We illustrate by showing how to execute the following loop:

int x= 0; int i= 3;

while (i != 5) {

x= x + i * i;

i= i + 1;

}

Activity 7-1.1
shows the actu-
al execution of
a loop, step by
step.

condition repetendtrue

false

Style Note
13.2, 13.2.3
indenting

loops

In a timing diagram, we draw the variables in a vertical column, separated
by a horizontal line; next to each variable, we place its initial value:

Now, we begin executing the loop. Whenever an assignment is executed, we
draw a vertical line to the right of the last value written and write in the new
value of the variable to the right of the line. For example, with the above loop,
because the condition i != 5 is true (since i is 3), the repetend is executed. First,
x is assigned the value 9, yielding:

Then, the assignment to i is executed, yielding:

The loop condition is evaluated again; it is true, so the repetend is again exe-
cuted. Below, to the left, we show the trace of the variables after assigning to x
and, to the right, after assigning to i.

The loop condition is evaluated again. Because it is false (since i now has the
value 5), the loop terminates.

Tracing the values of variables in this fashion has the advantage that we see
clearly the order in which the variables were assigned and the values on which
the evaluation of each expression depends. If we feel we may have made a mis-
take (which happens more often than most programmers like to admit), we can
more easily go back and rectify it.

7.1.3 Self-review exercises

SR1. Write down the syntax of the while-loop.

SR2. Draw the flow chart of a while-loop.

SR3. Draw timing diagrams for the following loops.

(a) x= 1; i= 1; (b) x= 1; i= 3;

while (i != 4) { while (i != 0) {

x= x * i; x= x * i;

i= i + 1; i= i - 1;

} }

x 0 9 25
i 3 4 5

x 0 9 25
i 3 4

x 0 9
i 3 4

x 0 9
i 3

x 0
i 3

7.1 The while-loop 235

(c) x= 1; i= 2; (d) x= 2; y= 4; z= 1;

while (i <= 7) { while (y != 0) {

x= x * i; if (y % 2 == 0) {

i= i + 2; x= x * x;

} y= y / 2;

} else {

z= z * x;

y= y - 1;

}

}

Answers to self review exercises

SR1. See beginning of Sec. 7.1.1.

SR2. See Sec 7.1.1.

SR3. (a)

(b)

(c)

(d)

7.2 Understanding and developing loops

Loops are far more complicated than assignments or if-statements, and, general-
ly speaking, learning how to develop loops is more difficult than learning about
assignments or if-statements. In this section, we go into detail about how to think
about loop development and how to annotate a loop with comments that help the
reader (and writer) understand it. We start with a discussion of some notation that
helps simplify discussions of some loops.

A note on ranges h..k
We often want to say something about a range of integers, for example, the

integers 5, 6, 7, and 8. To simplify, we use the notation 5..8 to denote this range.
The notation h..k denotes the range of integers h, h + 1, h + 2, …, k - 1, k.

For example, we might say, “the integers 5..8 have been printed”, or, “x is

Style Note
13.2, 13.2.3
indenting

loops

x 2 4 16
y 4 2 1 0
z 1 16

x 1 2 8 48
i 2 4 6 8

x 1 3 6 6
i 3 2 1 0

x 1 1 2 6
i 1 2 3 4

236 Chapter 7 Loops

the sum of the integers 1..n (for some integer n)”.
In the table below, we give examples of ranges, giving the integers in the

range and a formula (last-value + 1 - first-value) for calculating the number of
integers in the range. The last line gives a general range with two variables: h..k.

Take special note of the range 5..4, which denotes the range beginning at 5
but containing no integers. It may seem weird, but it follows the progression
given by the preceding three, and it is quite useful, mathematically speaking.

Whenever we write a range like h..k, we assume, usually without explicit-
ly saying so, that h ≤ k + 1, and if h = k + 1, then the range is empty. For exam-
ple, we would never write a range 5..3 or 5..2 because they do not make sense.
But 5..4 is ok: it denotes the set of no integers.

7.2.1 Four loopy questions

This sequence of statements prints the squares of integers in the range 2..4:

System.out.println(2 * 2);

System.out.println(3 * 3);

System.out.println(4 * 4);

Below, we write a loop that does the same thing. We think of the loop shown
below as simulating this sequence of three statements:

int i= 2;

while (i != 5) {

System.out.println(i * i);

i= i + 1;

}

We look for a way of commenting the loop —this particular loop is, perhaps,
simple enough that it does not require comments, but most loops do. In order to
figure out what kind of comments will help, we annotate the sequence of three
statements, showing what is true before and after each one:

Activity 7-1.2
covers the
same material
but with a dif-
ferent loop.

range integers in range number of integers

5..7 5, 6, 7 7 + 1 - 5 = 3

5..6 5, 6 6 + 1 - 5 = 2

5..5 5 5 + 1 - 5 = 1

5..4 (none) 4 + 1 - 5 = 0

h..k h, h + 1, …, k k + 1 - h

7.2 Understanding and developing loops 237

// { the squares of 2..1 have been printed }

System.out.println(2 * 2);

// { the squares of 2..2 have been printed }

System.out.println(3 * 3);

// { the squares of 2..3 have been printed }

System.out.println(4 * 4);

// { the squares of 2..4 have been printed }

Each assertion explains exactly what has been printed at that point in exe-
cution. Note the use of the range 2..1 in the first assertion to say that no squares
have been printed. This notation allows us to write all four assertions in the same
form, which, as you will see, is important when finding a good loop comment.

We want to place the same kind of information in the while-loop, but, since
there is only one println statement in the repetend, we cannot insert all four
assertions in the statement sequence! But note that the assertions are exactly the
same except for the last value of the range. Thus, each assertion has the form
shown below, but each has a different value in place of variable i:

loop assertion: the squares of 2..i-1 have been printed

We call this loop assertion an invariant of the loop because it remains invari-
antly true throughout execution (invariant means non-changing). We can think
of this relation as a generalization of the four assertions in the sequence: the
range in the assertion increases with i. Below, we have placed this invariant as a
comment between the initialization and the loop:

// Print the squares of integers in the range 2..4
int i= 2;

// { invariant: the squares of 2..i-1 have been printed }

while (i != 5) {

System.out.println(i * i);

i= i + 1;

}

// { the squares of 2..4 have been printed }

We now look at how we understand a loop that is annotated with such an
invariant. We ask ourselves four questions:

1. How does it start? This question involves the initialization. Why is variable
i initialized to 2? Answer: because that initialization truthifies the invariant
before any real work is done.

2. When is it done? When the loop terminates, the last assertion had better be
true. In our running example, at the end, the squares of values in the range 2..4
have been printed. The invariant says this:

invariant: the squares of 2..i-1 have been printed

238 Chapter 7 Loops

When the loop condition evaluates to false, i = 5. So, when the loop terminates,
the invariant says:

the squares of 2..5-1 have been printed

which means:

the squares of 2..4 have been printed

which is exactly the final assertion!

3. How does it make progress? We have to be sure that the loop terminates,
which means that at some point the loop condition will become false. In this
case, i starts out at 2 and ends at 5. The statement i= i + 1; in the repetend
ensures that each iteration makes progress toward the loop condition becoming
false.

4. How does it fix the invariant? The invariant must be true each time the loop
condition is evaluated. So, we have to ensure that each execution of the repetend
fixes the variables to keep it true. In this case, before the repetend is executed,
we know the following from the loop condition and the loop invariant:

i != 5 and the squares of 2..i-1 have been printed

Therefore, the next value to print is i * i. The repetend prints this value and then
increases i, after which the invariant again true.

The above analysis talked about a particular loop. We now discuss the same
questions with regard to a general loop of this form:

initialization
// invariant: explains what is true whenever the condition is evaluated
while (condition) {

repetend
}

// postcondition: an assertion of what is supposed to be true at the end

Again, here are the questions we ask when we are understanding a given
loop or writing our own loop:

1. How does it start? In other words, what initialization of variables will make
the invariant true initially? Here are two general strategies for this: try to make a
range empty and set some variable to zero.
2. When does it stop? When it stops, the invariant is true and the loop condition
is false. From these two facts, we should be able to conclude that the postcondi-
tion is true.
3. How does it make progress? What statement in the repetend ensures that
after a number of iterations the loop condition will eventually become false?
4. How does it fix the loop invariant? We have to make sure that the following
precondition-statement-postcondition triple holds:

7.2 Understanding and developing loops 239

// { condition and invariant are true }

repetend
// { invariant is true }

7.2.2 Developing a second loop

We develop a second loop, which stores the sum of the first n - 1 positive num-
bers in int variable x, for some n ≥ 1. Here is a subtle point: if n is 1, then we
want to store the sum of the first 0 numbers in x. That is why we assign 0 to x as
a separate step:

// Store 1 + 2 + … + (n - 1) in x (assuming n ≥ 1)
x= 0;

x= x + 1;

x= x + 2;

…;

x= x + (n - 1);

We develop a loop that is equivalent to this sequence of assignments.

Developing the loop invariant
The first task is to annotate this sequence so that we can derive a suitable

loop invariant. We start by writing a postcondition. The postcondition is easily
derived from the task of the segment, to store 1 + 2 + … + (n - 1) in x:

// { x = sum of 1..n-1 }

Working backward from the postcondition, we fill in the other assertions:

// { precondition: x = sum of 1..1-1 }
x= x + 1;

// { x = sum of 1..2-1 }
x= x + 2;

// { x = sum of 1..3-1 }
…

// { x = sum of 1..(n-1)-1) }
x = x + (n-1);

// { postcondition: x = sum of 1..n-1 }

Note that they all have the same form: the upper end of the range is an
expression of the form v - 1 for some value v. Making them all have the same
form is important for finding an invariant.

Like the previous example, the precondition may seem a bit odd. Again, this
useful convention allows us to write assertions in a consistent manner.

A relation that generalizes all these assertions can be found by generalizing
the postcondition: make a copy of the postcondition and replace identifier n by a
fresh (that is, new) variable, say k:

Activity
7-1.4

240 Chapter 7 Loops

invariant: x = sum of 1..k-1

When k is 1, this assertion looks like the precondition, when 2, it looks like the
second assertion. And so on. This generalizing statement is the loop invariant.

We now ask our four loopy questions to help us develop the algorithm.

1. How does it start? How do we initialize x and k so that the invariant is
true? The sequence of statements given at the beginning of the section
starts with x = 0. So, the sum of 1..k-1 has to be 0, and this happens
only with k = 1. So, the initialization is this:

x= 0;

k= 1;

2. When does it stop? The loop can stop only when x = sum of 1..n-1.
From the invariant, we know that x = sum of 1..k-1. So, the loop can
stop when k = n. Therefore, it should continue as long as k != n.

3. How does it make progress? Variable k starts out at 1 and has to get up
to n. Therefore, progress can be made by adding 1 to k.

4. How does it fix the invariant? When the repetend starts, x is the sum of
1..k-1. The repetend is going to increase k. Before this is done, the next
value, k, has to be added to x. Thus, the invariant is fixed by executing
x= x + k;

This ends development of the loop, which is written as:

// Store 1 + 2+ … + (n-1) in x
x= 0;

k= 1;

// { invariant: x = sum of 1..k-1 }
while (k != n) {

x= x + k;

k= k + 1;

}

7.2.3 A slightly different problem

In the previous section, we developed a loop that terminated with this postcon-
dition:

x is the sum of 1..n-1

Here, we outline the development of a loop for a slightly different postcondition:

x is the sum of 1..n (where n ≥ 1)

The purpose of writing a loop for this slightly different problem is to show
you how careful you have to be with the meanings of variables. You have to con-

Activity
7-1.7

7.2 Understanding and developing loops 241

centrate full attention on the given preconditions, postconditions, invariants, and
other definitions. We will be brief in our explanation, for what we do here is sim-
ilar to what we did in the previous section.

As before, we find the loop invariant by replacing n in the postcondition by
a fresh variable k:

invariant: x is the sum of 1..k

1. How does it start? Since n ≥ 1, start with x equal to 1 and k equal to 1.
2. When does it stop? The invariant says that x is the sum of 1..k. It stops

when x is the sum of 1..n. So, it stops when k = n and continues as long
as k != n.

3. How does it make progress? By increasing k by 1.
4. How does it fix the invariant? By adding the next value, which is k + 1,

to x.

Therefore, the loop (with initialization) is:

x= 1;

k= 1;

// { invariant: x is the sum of 1..k }
while (k != n) {

x= x + (k + 1);

k= k + 1;

}

7.2.4 Self-review exercises

SR1. How does it start? Each case below consists of a relation and (perhaps)
values for some of the variable used in the relation. Write assignments to the
other variables that make the relation true.

Relation Known variables Assign to
(a) x * y = 5 * 4 x is 5 y

(b) x * y = a * b x is a y

(c) x = sum of 1..h x is 1 h

(d) x = sum of 1..h h is 2 x

(e) x = sum of 1..h h is 1 x

(f) x = sum of 1..h h is 0 x

(g) x = sum of h..10 h is 10 x

(h) x = sum of h..10 h is 9 x

(i) x = sum of h..10 x is 10 h

(j) z + x * y = a * b z is 0 x, y
(k) z * xy = ab z is 1 x, y
(l) sum of h..n = sum h..k k

242 Chapter 7 Loops

SR2. When does it stop? Each case below consists of an invariant and a post-
condition. It is known that the invariant is true. What extra condition is needed
to know that the postcondition is true?

invariant postcondition
(a) x is sum of 1..k x is sum of 1..10
(b) x is sum of 1..k x is sum of 1..n
(c) x is sum of 0..k-1 x is sum of 0..10
(d) x is sum of 1..k-1 x is sum of 1..n
(e) x is sum of 0..k-1 x is sum of 0..n-1
(f) x is sum of h..k x is sum of 1..k
(g) x is sum of h..k-1 x is sum of 1..k-1
(h) m is the average of h..k-1 x is the average of 1..k-1
(i) m is the average of 1..k-1 m is the average of 1..n-1
(j) z + x * y = a * b x * y = a * b

(k) z + x * y = a * b z = a * b

(l) h..k-1 has been processed 1..k-1 has been processed

SR3. How does it make progress? Each case below consists of an initial value
for a variable and a final value. Write down a simple assignment that gets the
variable closer to its final value.

initial value final value
(a) h is 0 h is 10
(b) h is 10 h is 0
(c) h is n (where n > 0) h is 0
(d) h is n (where n < 0) h is 0

SR4. How does it fix the invariant? Each case below contains a relation that is
assumed to be true and a statement that changes a variable. Write down a state-
ment to execute before the given statement so that after both are executed, the
relation is still true.

relation statement
(a) s is the sum of 1..h h= h + 1;

(b) s is the sum of 1..h-1 h= h + 1;

(c) s is the sum of k..n k= k - 1;

(d) s is the sum of k+1..n k= k - 1;

(e) s is the sum of 1..h h= h - 1;

(f) z + x * y = 100 y= y - 1;

(g) z + x * y = 100 and y is even and y > 0 y= y / 2;

Answers to self-review exercises
SR1. (a) y = 4, (b) y = b, (c) h = 1, (d) x = 3, (e) x = 1, (f) x = 0, (g) x =
10, (h) x = 19, (i) h = 10, (j) x = a, y = b, (k) x = a, y = b, (l) k = n.

SR2. (a) k = 10, (b) k = n, (c) k - 1 = 10, (d) k - 1 = n, (e) k = n, (f) h = 1,. (g) h

7.2 Understanding and developing loops 243

= 1, (h) h = 1, (i) k = n, (j) z = 0, (k) x * y = 0 (or x = 0 || y = 0), (l) h = 1.

SR3. (a) h= h + 1;, (b) h= h - 1;, (c) h= h - 1; (d) h= h + 1;

SR4. (a) s= s + (h + 1); (b) s= s + h; (c) s= s + (k - 1);, (d) s= s + k;, (e)
s= s - h;, (f) z= z + x;, (g) x= x + x;.

7.3 Examples of while-loops

7.3.1 The roach explosion

Your new apartment is infested with roaches, and they are multiplying rapidly.
You would like to figure out how long it will take for them to completely fill up
the apartment. You have measured the nasty things and have determined that they
average .001 cubic feet each —they are big! While measuring, you found out
that there were about 100 of them to start. You have been told that, if unchecked,
the population more than doubles every week, increasing by 125 percent. You are
going to write a program segment to figure out how many weeks it will take for
them to completely fill the apartment.

The basic idea of a program is straightforward: calculate how many roaches
there are after weeks 1, 2, 3, and so on, and stop as soon as the volume of the
roaches is at least the volume of the apartment. This requires a loop, and we
begin its development by figuring out its postcondition.

We assume that the volume of the apartment is in variable apartment-
Volume. We need a variable w to contain the number of weeks and another vari-
able population to contain the population at the end of w weeks:

the roach population after w weeks is population

This property of w and population will hold when the program segment ter-
minates. But there is more to say about what is true upon termination. First, the
apartment volume is at most the roach volume because termination occurs when
there are enough roaches to fill the apartment. Second, the roaches filled the
apartment only in week w because the loop did not terminate in week w - 1. Thus,
we have this postcondition:

postcondition: the roach population after w weeks is population, and
apartmentVolume ≤ roach volume, and
week w - 1’s roach volume < apartmentVolume

Developing the loop invariant
We now think about the loop invariant. The property of population and w

should remain true and thus should be part of the invariant. The second part of
the postcondition cannot be part of the invariant —that is the difficult part to cal-
culate; that is what the loop is for. However, the third part will be true initially,
when there are very few roaches. Since it is expected to be true initially and true
at the end, we make sure it is always true by placing it in the loop invariant.

Activity
7-2.2

244 Chapter 7 Loops

invariant: roach population after w weeks is population and
week w - 1’s roach volume < apartmentVolume

The postcondition and the invariant differ only in that the postcondition has
one more piece: the roach volume has exceeded the apartment volume.

We now develop the loop using our methodology.
How does it start? The roach population after 0 weeks is 100. So, we use

the assignments:

w= 0;

population= 100;

When does it stop? When the roach volume is big enough: the roach vol-
ume ≥ apartmentVolume. So the loop condition is the complement of this rela-
tion. Remember, the roach volume is the product of a single-roach volume and
the number of roaches.

How does it make progress? The postcondition requires that apartment-
Volume ≤ roach volume. In order to make progress toward this, the number of
roaches has to increase. According to the roach-population-growth rule at the
beginning of this section, this means adding population * 1.25 to population
(because the population increases by 125 percent). Here, we do the equivalent:
multiply by 5 and divide by 4, so that all the operations are of type int.

How does it fix the invariant? Because the roach population grows week-
ly, the week number increases by 1.

/* Calculate the number w of weeks it takes a roach infestation to
completely fill an apartment */

int w= 0;

int population= 100; // roach population after w weeks
/* invariant: roach population after w weeks is population and

week w - 1’s roach volume < apartmentVolume */
while (apartmentVolume > population * .001) {

population= population + (5 * population) / 4;

w= w + 1;

}

7.3.2 Exponentiation

Figures. 7.1a and 7.1b contain two loops that compute the value bc (b multiplied
by itself c times) where b and c are ints. For example, 23 = 2 * 2 * 2 = 8; and
20 = 1. We use the second loop to illustrate the power of loop invariants because
it is very hard to understood and develop without an invariant, and it is a much
faster algorithm for computing an exponent.

The straightforward approach
In the first loop, y is the remaining number of times to multiply by b. Each

Activity
7-2.3

See lesson
page 7-2 to ob-
tain this loop

7.3 Examples of while-loops 245

iteration multiplies z by b and decrements y. For purposes of comparison with
the second version, we discuss this algorithm using the four loopy questions.

How does it start? To see that the first conjunct of the invariant is true ini-
tially, make a copy of the conjunct and, because of the initializations, replace
each occurrence of y with c and z with 1. This yields 1 * bc = bc, which is true.
So, the initialization truthifies the conjunct.

When can it stop? It stops when y = 0. Substituting 0 for y in invariant z *
by = bc yields z * b0 = bc, which reduces to z = bc.

How does it make progress? Each iteration decreases y by 1, making y
closer to 0.

How does it fix the invariant? To check that the repetend maintains the
invariant, we notice that we can “pull out” a factor of b:

z * by = z * b * by-1

Therefore, the assignments to z and y keep the value of z * by the same, so the
value of the first conjunct remains unchanged. Thus, the repetend keeps the
invariant true.

Notice that y starts with value c, y decreases by one every iteration, and the
loop terminates when y = 0. Thus, this loop takes c iterations.

Processing the binary representation of the exponent: how fast?
We first analyze how quickly the loop in Fig. 7.1b terminates. Then, we dis-

cuss its correctness.
The loop uses information about the binary representation of exponent c.

For example, suppose c is 5, which is 101 in binary. The second statement
assigns (binary) 101 to y. Because y is not 0, the repetend is executed. The if-
condition tests whether y is even, and this test can be made by looking at the
rightmost bit of the binary representation of y. Since this bit is 1, meaning y is
odd, the else-part is executed, which subtracts 1 from y, yielding 100.

246 Chapter 7 Loops

/** Set z to b^c, given c ≥ 0 */
int x= b; int y= c; z= 1;

// { invariant: z * xy = bc, 0 ≤ y ≤ c }

while (y != 0) {

if (y % 2 == 0) {

x= x * x;

y= y / 2;

} else {

z= z * x;

y= y - 1;

}

}

// { postcondition: z = bc }

/** Set z to b^c, given c ≥ 0 */
int y= c;

z= 1;

// { invariant: z * by = bc, 0 ≤ y ≤ c }

while (y != 0) {

z= z * b;

y= y - 1;

}

// { postcondition: z = bc }

Figure 7.1b: Fast exponentiation algorithmFigure 7.1a: Slow exponentiation algorithm

The loop condition is evaluated, and again it is true. This time, since the
rightmost bit of the binary representation of y is 0, y is even, and the then-part is
executed. The then-part divides y by 2. Division of an even decimal number by
2 is equivalent to deleting the last 0 of its binary representation, yielding 10.

Again, the loop condition is evaluated, and again it is true. Again, y is even,
and the then-part is executed. This statement divides y by 2. This deletes the last
0 of its binary representation, yielding 1.

Again, the loop condition is evaluated, and again it is true. y is odd, and the
else-part is executed. This statement subtracts 1 from y, yielding 0. This termi-
nates the loop.

This analysis should convince you that this algorithm processes the binary
representation of exponent y. The loop iterates once or twice for each bit of the
exponent, so the total number of iterations is bounded above by twice the num-
ber of bits in the binary representation of the exponent. So, to compute 215

requires at most 8 iterations (15 in binary is 1111) and to compute 2127 requires
at most 14 iterations (127 in binary is 1111111). Compare this with the slow ver-
sion in Fig. 7.1a, which requires 127 iterations to calculate 2127!

Using the invariant
Focusing on y has enabled us to determine the maximum number of itera-

tions of the loop and has given us insight into how y is used. But it hasn't helped
us determine that the loop is correct. How do we know that z has the correct
value upon termination?

We know of no way of explaining this without using the invariant, which
gives the relation between all five variables of the algorithm.

From our earlier analysis, we can see that the second conjunct of the invari-
ant, 0 ≤ y ≤ c, is true initially and is maintained by the repetend. So, we concen-
trate on the first conjunct, z * xy = bc.

How does it start? To see that the first conjunct of the invariant is true ini-
tially, make a copy of the conjunct and, because of the initialization, replace each
occurrence of x with b, of y with c, and of z with 1 to yield 1 * bc = bc, which
is true. So, the initialization truthifies the conjunct.

When can it stop? It stops when y = 0. Substituting 0 for y in invariant z *
xy = bc yields z * x0 = bc, which reduces to z = ab because x0 = 1.

How does it make progress? Each iteration either decreases y by 1 or
halves y, making y closer to 0.

How does it fix the invariant? Checking that the repetend maintains the
invariant requires looking at two cases: y is odd or y is even.

For the case that y is even, we use this identity:

xy = (x * x)y/2 (for y even)

Therefore, the assignments to x and y keep the value of xy the same, so the value
of the first conjunct remains unchanged.

For the case that y is odd, we use this identity:

See lesson
page 7-2 to ob-
tain this loop

7.3 Examples of while-loops 247

z * xy = z * x * xy-1

Therefore, the assignments to z and y keep the value of z * xy the same, so the
value of the first conjunct remains unchanged.

In both cases —y even and y odd— the repetend keeps the invariant true.
With the aid of the invariant, we have analyzed the algorithm and seen that

it is correct.

7.3.3 The spiral

Activity 7-2.4 of the CD shows you a loop that draws spirals of 2000 line seg-
ments of increasing size, with successive lines being drawn in alternating colors
at the same angle. Change the angle, and you get radically different designs.
Watch the activity so that you can see the colorful and beautiful designs that arise
from this one loop. Amazingly different designs are drawn just by changing the
angle between successive lines.

On this black-and-white paper, we cannot do justice to the spirals that are
drawn, to the description of what each spiral consists of, or to the loop itself.
Therefore, we do not discuss the algorithm here. Look at it on the CD. Also,
obtain the program from the CD and run it yourself, experimenting with differ-
ent angles to see the designs that arise.

7.4 Loop patterns

A schema is just a “generalized presentation or a framework of reference”. A
loop schema is a loop (with initialization) that performs an abstract task, like:

Process the natural numbers 0..n-1

whose repetend includes an abstract statement, like:

Process k

We can use such a schema in many ways. For example, suppose we need to count
the w's in a String s. We need not program this from scratch. Instead, because
the characters are numbered 0 through s.length() - 1, we can start with the
loop schema and refine it to fit the new task. We investigate this idea.

7.4.1 Schema to process natural numbers

We develop an abstract loop to sequence through the integers in 0..n - 1, for
some natural number n, processing each one in turn. This loop is abstract because
we do not say what it means to process a number.

The abstract loop should do this:

Activity
7-3.1

See lesson
page 7-2 to ob-
tain this loop.

Activity
7-2.4

248 Chapter 7 Loops

Process 0;
Process 1;
…

Process n - 1;

We can easily write down a postcondition for the loop:

0..n-1 have been processed

To develop a loop invariant, we make a copy of the postcondition and replace n
in it by a fresh variable k:

invariant: 0..k-1 have been processed

How does it start? The invariant has the nice property that assigning 0 to k
truthifies it, because the invariant then means that no natural numbers have been
processed.

When does it stop? The loop should stop when k = n because then the
invariant implies that the postcondition is true. So, the loop should continue as
long as k != n.

How does it make progress? Variable k starts out at 0 and is supposed to
end up at n, so to make progress, increment k.

How does it fix the invariant? Since k is being incremented, the next num-
ber must be processed. The invariant tells us that the next number is k.

This leads to the loop schema of Fig. 7.2.

7.4.2 A loop to count the w's

We write a loop to count the number of w's in a string s, starting with the schema
of Fig. 7.2. We can use this schema because the task is to process the characters
of s, and these have numbers in the range 0..s.length()-1, so we are really
processing the integers in this range.

The first step is to rewrite the schema in the context of our problem. We
begin by replacing n in the schema by s.length().

Activity
7-3.2

See lesson page
7-3 to obtain
the schema.

7.4 Loop patterns 249

// Process the n natural numbers 0..n-1 (for n ≥ 0)
int k= 0;

// { invariant: 0..k-1 have been processed }

while (k != n) {

Process k;

k= k + 1;

}

// { 0..n-1 have been processed }

Figure 7.2: A schema to process natural numbers 0..n-1

// Process the natural numbers 0..s.length()-1

int k= 0;

// { invariant: 0..k-1 have been processed }

while (k != s.length()) {

Process k;

k= k + 1;

}

// { 0..s.length()-1 have been processed }

Next, we replace the abstract specification, postcondition, and invariant by con-
crete ones:

// Set x to the number of w's in s[0..s.length()-1]
int k= 0;

// { invariant: x = number of w's in s[0..k-1] }
while (k != s.length()) {

Process k;

k= k + 1;

}

// { x = number of w's in s[0..s.length()-1] }

We must initialize so that the invariant is true initially. Since k is initially 0,
to truthify the invariant, set x to 0.

The only thing left to do is to insert code to process character k. If this char-
acter is a w, then s has to be incremented. This leads to the program of Fig. 7.3.

Concluding remarks
This concludes the development of a loop from a loop schema. With this par-

ticular schema, most of the code gets copied over, without change, making the
development easier (and shorter). The main creative parts are to truthify the
invariant initially and to write the implementation of “Process k”. To do this cor-
rectly, we first have to write the postcondition and then the invariant.

See lesson
page 7-3 to ob-
tain the loop

250 Chapter 7 Loops

// Set x to the number of w's in s[0..s.length()-1]
int k= 0;

x= 0;

// { invariant: x = number of w's in s[0..k-1] }
while (k != s.length()) {

if (s.charAt(k) == 'w') {

x= x + 1;

}

k= k + 1;

}

// { x = number of w's in s[0..s.length()-1] }

Figure 7.3: Counting the w’s

The first time one sees the development of a loop from a schema, it seems
like a lot of extra work. However, with practice, it becomes second nature to
think in terms of the schema, rather than develop a loop from scratch all the time,
and the whole process becomes easier and more efficient. Develop a few loops
this way, and you will get to the point where you can do it without even having
to look at the schema.

7.4.3 Testing primality

We use the schema of Fig. 7.2 again, but this time with slight variations on the
theme. We write a loop, with initialization, to determine whether variable p is
prime. Recall that a prime is an integer that is greater than 1 and whose only pos-
itive divisors are 1 and itself. The result is stored in variable b: upon termination
b is true if and only if p is a prime.

We can use this schema because our task requires processing a range of nat-
ural numbers. The range starts at 2 and ends at p - 1 , so we change the schema
accordingly, to start processing at 2 instead of 0. And we replace n by p.

// Process natural numbers 2..p-1

int k= 2;

// { invariant: 2..k-1 have been processed }

while (k != p) {

Process k;

k= k + 1;

}

// {2.(-1 have been processed }

Our concrete postcondition is the following:

postcondition: b == (p > 1 and no integer in 2..p-1 divides p)

The invariant of the schema is the same as the postcondition of the schema
except that it has k in the range instead of p. Quite likely, the concrete invariant
will bear the same relationship to the concrete postcondition:

invariant: b == (p > 1 and no integer in 2..k-1 divides p)

Therefore, we have this algorithm:

int k= 2;

// Assign to p to truthify the invariant;

// { inv: b == (p > 1 and no integer in 2..k-1 divides p) }
while (k != p) {

Process k;

k= k + 1;

}

// { b == (p > 1 and no integer in 2..p-1 divides p) }

See lesson
page 7-3 to ob-
tain the loop

Activity
7-3.3

7.4 Loop patterns 251

We have to: (1) make sure the invariant is true initially and (2) implement
the English statement “Process k”.

1. The invariant is truthified using the assignment b= p > 1; —with k = 2,
the range 2..k-1 is empty.

2. To process k means to add 1 to k if and only if k does not divide p.

To summarize, always increment k, and make b false if k divides p.

This gives us the algorithm of Fig. 7.4.

Optimization
We can make an optimization. Once b becomes false, it remains false

because the only statement that changes b (after its initialization) is the statement
b= false;. Therefore, it makes sense to terminate the loop if it is recognized that
b is false. We do this by changing the loop condition to:

b && (k != p)

We can make another optimization. Suppose an integer d divides p. Then:

p = d * (p / d)

One of d and p / d is at most sqrt(p) and the other is at least sqrt(p).
Therefore, only the integers in the range 2..floor(sqrt(p)) have to be
checked to see whether they divide p. We leave it to you to change the algorithm
to take this into account. Make sure your algorithm evaluates sqrt(p) only once.
You will find the functions in class java.lang.Math helpful.

7.4.4 A schema for reading

Activity 7-3.4 develops a schema for reading a list of nonzero values from the
Java console and processing them. Activity 7-3.5 uses this schema to print the
sum of a sequence of nonzero values that are read from the Java console.

Activity
7-3.4

252 Chapter 7 Loops

// Set b to "p is a prime"
b= p > 1;

int k= 2;

// { invariant: b == (p > 1 and no integer in 2..k-1 divides p) }
while (k != p) {

if (p % k == 0) {

b= false;

}

k= k + 1;

}

// { b = (p > 1 and no integer in 2..p-1 divides p) }

Figure 7.4: Testing primality

7.4.5 Self-review exercises

SR1. The range in the schema in Fig. 7.2 can be generalized. Rewrite it so that
it processes the natural numbers in the range i..j-1 rather than 0..n-1.

SR2. Use the schema in Fig. 7.2 to write a loop to find the number of vowels in
a String s. Hint: declare a new String that contains the five vowels, and use
the fact that String method indexOf returns -1 if the char argument is not in
the String of vowels.

SR3. How many numbers are there in the range i..j-1?

Answers to self review exercises

SR1. // Process the natural numbers i..j-1 (for j ≥ i)
int k= i;

// { invariant: i..k-1 have been processed }

while (k != j) {

Process k;

k= k + 1;

}

// {i..j-1 have been processed }

SR2. // Set x to the number of vowels in s[0..s.length()-1]
int k= 0; x= 0;

String vowels = "aeiou";

// { invariant: x = number of vowels in s[0..k-1] }
while (k != s.length()) {

if (vowels.indexOf(s.charAt(k)) != -1) {

x= x + 1;

}

k= k + 1;

}

// { x = number of vowels in s[0..s.length()-1] }

SR3. j - i + 1

7.5 The for-loop

7.5.1 The for-loop as an abbreviation

Besides the while-loop, Java has an iterative statement called the for-loop. The
for-loop can be viewed as an abbreviation of a certain kind of while-loop. Here
is an example. The following loop draws n concentric circles:

Activity
7-4.1

7.5 The for-loop 253

/** Draw n circles using Graphics g with centers (x, y)

and radii of 4, 8, 12, …*/
int i= 0;

// { invariant: the i smallest circles have been drawn }

while (i != n) {

int r= 5 + 5 * i; // radius of circle i
g.drawOval(x - i, y - i, 2 * i, 2 * i);

i= i + 1;

}

This loop has a loop counter, i. A variable is a loop counter if (1) it is ini-
tialized just before the loop and (2) the repetend ends with a statement that
increments (or decrements) it.

Below, we rewrite the while-loop as a for-loop. The first line of the for-loop
(the line that begins with for) contains the initialization, the loop condition, and
the increment of the loop counter (without the final semicolon!):

// Draw n circles with centers (x, y) and radii of 4, 8, 12, …
// { invariant: the i smallest circles have been drawn }

for (int i= 0; i != n; i= i + 1) {

int r= 5 + 5 * i; // radius of circle i
g.drawOval(x - i, y - i, 2 * i, 2 * i);

}

The two program segments, one using a while-loop and one using a for-loop,
execute exactly the same way. The for-loop is more compact and has a different
feel to it. All the “control” part of the loop appears in the first line, and that makes
it easier to understand, for some. When looking at the repetend, for example, one
has to think of only one thing: how does it fix the invariant?

When you decide that a loop is needed in a program, if you can be positive
that the loop will have a loop counter, write the loop as a for-loop. However,
loops that do not have a loop counter are best written using a while-loop; and
forcing these loops into the for-loop format often results in awkward code.

7.5.2 Syntax and semantics of for-loops

Here is the syntax of a for-loop:

for (initialization ; condition ; progress)

repetend

The initialization is an assignment to the loop counter. It can also contain a
declaration of the loop counter, if it has not been declared previously. But the
scope of the loop counter that is declared within the loop is just the for-loop
itself.

The condition is a boolean expression.

Style Note
13.2, 13.2.3
indenting

loops

Activity
7-4.2

254 Chapter 7 Loops

The progress is a statement that makes progress toward termination.
Generally, it increments or decrements the loop counter. Note that this statement
does not end in a semicolon.

The repetend is any statement. Almost always, we write it as a block: { … }.
Here is an example that prints the numbers 0..4:

for (i= 0; i != 5; i= i + 1) {

System.out.println(i);

}

Semantics of the for-loop
To show how the for-loop is executed, we give equivalent code that uses a

while-loop. First is the initialization, then the while-loop. The conditions of the
while-loop and for-loop are the same. The repetend of the while-loop consists of
the repetend of the for-loop followed by the progress part of the for-loop.

initialization
while (condition) {

repetend
progress

}

There is one slight difference between the general for-loop and the general while-
loop when the initialization contains a declaration. The scope of a loop counter
that is declared in the for-loop is only the for-loop; in the while-loop, the scope
extends beyond the while-loop to include any statements that follow it.

Example
Above, we wrote a for-loop that prints the numbers 0..4. Here is the equiv-

alent while-loop:

i= 0;

while (i != 5) {

System.out.println(i);

i= i + 1;

}

7.5.3 Developing a for-loop

Developing a for-loop is no different from developing a while-loop. The same
strategy is used for both. In the next development of a for-loop, we illustrate that,
in some cases, progress can be made by decrementing the loop counter.

We develop a loop to print the values 9, 8, and so on, down to 2. As the first
step, we write a postcondition, which we name R.

R: 9, 8, …, down to 2 have been printed

Activity
7-4.3

7.5 The for-loop 255

A possible loop invariant P can be created by making a copy of postcondition R
and replacing the last integer 2 in it by a fresh variable:

invariant P: 9, 8, …, down to k have been printed

How does it start? Initially, nothing has been printed. If k is set to 10, then the
invariant implies that

9, 8, …, down to 10 have been printed

i.e. no numbers have been printed. Therefore, setting k to 10 truthifies P.

When does it stop? Looking at the invariant and the postcondition, we see that
the loop should stop when k is 2, so it should continue as long as k != 2.

How does it make progress? By decreasing k.

How does it fix the invariant? By printing the next integer, which is integer k
- 1.

Putting it all together, we get this loop:

// Print 9, 8, …, down to 2
// { invariant P: 9, 8, …, down to k have been printed }

for (int k= 10; k != 2; k= k - 1)

{ System.out.println(k - 1); }

// { R: 9, 8, …, down to 2 have been printed }

A different invariant, a different loop.
The loop just developed may feel a bit odd: why not start k at 9, print k, and

stop when k is 1? That would work, but it would require a different invariant. A
different invariant P can be created by making a copy of postcondition R and
replacing the last integer 2 in it by k + 1 (instead of k); a self-review exercise in
Sec. 7.5.5 asks you to develop a loop using this invariant.

invariant P: 9, 8, …, down to k + 1 have been printed

7.5.4 A for-loop schema

Earlier, we presented this schema for processing the first n natural numbers:

// Process natural numbers 0..n-1, for n ≥ 0
int k= 0;

// { invariant: 0..k-1 have been processed }

while (k != n) {

Process k;

k= k + 1;

}

// {0..n-1 have been processed }

Lesson
page 7-4

256 Chapter 7 Loops

This loop has a loop counter, so we can also present it as the following for-
loop schema. This schema is used often for developing loops.

// Process natural numbers 0..n-1, for n ≥ 0
// { invariant: 0..k-1 have been processed }

for (int k= 0; k != n; k= k + 1) {

Process k;

}

// {0..n-1 have been processed }

7.5.5 Self-review exercises

SR1. Write another solution to the problem in Sec. 7.5.3, but this time use this
postcondition and invariant when you answer the four loopy questions:

R: 9, 8, …, down to 2 have been printed
invariant P: 9, 8, …, down to k + 1 have been printed

Answers to self review exercises

SR1. How does it start? Initially, nothing has been printed. If we set k to 9, then
the invariant has the meaning:

9, 8, …, down to 10 have been printed

which means that no numbers have been printed.

When does it stop? Looking at the invariant and the postcondition, we see that
the loop should stop when k is 1, so it should continue as long as k != 1.

How does it make progress? By decreasing k.

How does it fix the invariant? By printing the next integer, which is integer k.

7.6 Making progress and stopping

7.6.1 Why use condition i != n?

Suppose we have a loop like this one:

int i= 0;

// { invariant: … }

while (i != n) {

Process i;

i= i + 1;

}

Activity
7-5.2

7.6 Making progress and stopping 257

Another possibility for the loop condition of this loop is i < n. In this section, we
discuss the two possible loop conditions. We have two reasons for preferring
condition i != n.

Reason 1. It is easier to develop i != n, rather than i < n, using
our guidelines. We find a relation that indicates when the loop can
stop and complement it to get the loop condition.

Reason 2. Using i != n can lead to earlier detection of errors.

To understand the second reason, consider the following scenario. Suppose
someone has to change this program, perhaps because of a modification in its
specification to meet some new need, and they make a mistake that leads to i
becoming greater than n. With the loop condition i < n, the loop terminates; with
the condition i != n, the loop does not stop at all. Under these conditions, which
loop condition do you prefer?

With the error in the program, the loop condition i < n would cause the loop
to terminate. The error might go undetected and might never exhibit itself. When
the program is used later, the error could lead to unknowingly wrong output or
even to a plane crash.

But with the condition i != n, the program is in an infinite loop, and the pro-
grammer will certainly notice the problem and fix it immediately.

7.6.2 A case where i < n is needed

We develop a program to produce the reverse of a String t. Thus, if variable t
initially contains the value "abcde", upon termination t contains "edcba".

Unfortunately, one cannot change the value of a String object; it is immu-
table. The standard procedure in this case is to copy the String into a variable s
of class StringBuffer, which can be changed (is mutable), operate on s, and
then assign s to t. See Sec. 5.2.5 for information on class StringBuffer.

Here is the outline of the program segment:

StringBuffer s= new StringBuffer(t);

Set s to the reverse of s;
t= s.toString();

Here is an idea for reversing s. The first and last characters of s have to be
swapped, so we could do this first. Now, the outer two characters are in their final
positions, and the next two outer characters can be swapped. And then the next
two outer characters, and so on:

Activity
7-5.3

258 Chapter 7 Loops

The continue and break statements. Java has a continue statement, whose execution causes ter-
mination of the repetend of a loop. It also has a break statement, whose execu-
tion causes termination of a loop or a switch statement. For information on these
statements, look at the ProgramLive glossary as well as lesson page 7-6.

Swap s[0] and s[s.length() - 1];

Swap s[1] and s[s.length() - 2];

Swap s[2] and s[s.length() - 3];

…

The invariant must state what has and what has not been swapped into its
final position thus far. Based on the above sequence of statements, we see that
there is a prefix and a suffix of s that contain their final values, while the middle
remains to be reversed. We use two variables k and n to define the boundaries of
these three segments of t and write the invariant as:

inv: s[0..k-1] and s[n+1..] contain their final values, and
s[k..n] remains to be reversed

How does it start? By setting k to 0 and n to b.length() - 1, so that the prefix
and suffix that contain their final values are empty.

When does it stop? The loop can stop when the middle segment contains at
most one character, because then the middle segment is its own reverse. On the
other hand, when the middle segment contains more than one element, that is,
when k < n, more elements need to be reversed.

How does it make progress? By incrementing k or decrementing n (or both).

How does it fix the invariant? The elements s[k] and s[n] need to be
swapped. Then k can be incremented and n decremented.

This completes the development of the program segment —see Fig. 7.5.

Remarks
Using k != n as the loop condition is incorrect because it is not guaranteed

7.6 Making progress and stopping 259

// Set t to the reverse of t
StringBuffer s= new StringBuffer(t);

int k= 0;

int n= s.length() - 1;

// { invariant: s[0..k-1] and s[n+1..] contain their final values, and
// s[k..n] remains to be reversed }

while (k < n) {

char c= s.getChar(k);

s.setChar(k, s.getChar(n));

s.setChar(n, c);

k= k + 1;

n= n - 1;

}

t= s.toString();

Figure 7.5: Reversing a String

that k ≤ n. For example, if s initially contains 2 values, then initially k + 1 = n ,
and incrementing k and decrementing n makes k > n.

7.6.3 Off-by-one errors

An off-by-one error occurs when a loop iterates once too many or once too few
times. Many people will tell you that off-by-one errors arise from carelessness,
but that is all they say. They do not tell you how to develop the loop condition so
that off-by-one errors do not occur.

If you follow the guidelines given in this text, you will rarely make off-by-
one errors. As we have said earlier, to find a suitable condition for the loop, com-
pare the invariant, for example:

invariant: The i smallest circles have been drawn

with the postcondition, for example:

postcondition: The n smallest circles have been drawn

and determine a relation that, together with the invariant, implies the postcondi-
tion, for example”

relation: i = n

The complement of this relation is then the loop condition:

loop condition: i != n

Follow this little methodology and you will rarely make off-by-one errors.

7.6.4 The bound function of a loop

We have been rather informal about checking that a loop makes progress toward
termination. We now look in more detail at what it takes to determine this. We
illustrate the technique using this loop:

// Draw n circles with centers (x, y) and radii of 4, 8, 12, …
int i= 0;

// { invariant: i smallest circles were drawn and 0 ≤ i < n }
while (i != n) {

int r= 5 + 5 * i; // radius of circle i

g.drawOval(x - i, y - i, 2 * i, 2 * i);
i= i + 1;

}

We introduce what we call a bound function, in this case:

Bound function: n - i

This is an integer expression that gives an upper bound on the number of itera-

Activity
7-5.1

Activity
7-5.4

260 Chapter 7 Loops

tions still to be performed. In this case, n - i is the exact number of iterations,
but in other loops it may not be. The bound function is useful in determining
worst-case execution time, since it tells us the maximum number of iterations the
loop will make.

Properties of a bound function
In order to be an upper bound on the number of iterations, the bound func-

tion must satisfy two properties:

1. Each iteration must decrease the bound function.

In our example program, execution of the assignment to i reduces the value
of expression n - i by 1.

In determining the second property, consider this. It is not enough to see that
the bound function decreases at each iteration. We must also know that at some
point the loop condition becomes false. We do this by requiring that as long as
there is another iteration to perform, the bound function is greater than 0. We
know there is another iteration to perform if (1) the invariant is true and (2) the
loop condition is true.

Thus, the second property that a bound function must satisfy is this:

2. The invariant, together with loop condition, must imply that the
bound function is greater than 0.

In our example, from the invariant and the loop condition, we conclude that
i < n , and from this we conclude n - i > 0, as required.

7.7 Miscellaneous points about loops

7.7.1 There are no nested loops

We write a program to count the number of primes in 2..99. Recall that a prime
is an integer that is greater than 1 and is divisible by only 1 and itself.

We can use the natural-number for-loop schema for this purpose and write
the program, with part of it abstract, fairly quickly. The only part that is abstract
and needs to be refined is the question of whether i is a prime.

// Set x to the number of primes in 2..99

int x= 0;

// { invariant: x = the number of primes in 2..i-1 }

for (int i= 2; i != 100; i= i + 1) {

if (i is prime) { x= x + 1; }

}

Changing the task slightly to fit previously written code
In Sec. 7.4.3, we wrote code to test whether an integer is prime. To prepare

Activity
7-6.1

7.7 Miscellaneous points about loops 261

for using this code, we change the program segment to set a boolean variable
depending on whether i is prime and then use this task before the test and change
the test accordingly:

// Set x to the number of primes in 2..99
int x= 0;

// { invariant: x = the number of primes in 2..i-1 }

for (int i= 2; i != 100; i= i + 1) {

Set fresh variable b to "i is prime";
if (b) { x= x + 1; }

}

Implementing the assignment to b
We now implement the statement b = "i is prime", using the code from

Fig. 7.4, with slight adjustments. With this preparation, we can now move this
code into the program. The result appears in Fig. 7.6. This completes the devel-
opment of the program to compute the number of primes in 2..99.

How to read Fig. 7.6
When reading the program segment of Fig. 7.6 for the first time, try to un-

derstand the outer loop. In doing so, view its repetend as a sequence of two state-
ments:

Set fresh variable b to "i is prime";
if (b) { x= x + 1; }

Activity
7.6-2

See lesson
page 7.6 to
obtain the final
program

262 Chapter 7 Loops

// Set x to the number of primes in 2..99

int x= 0;

// { invariant: x = the number of primes in 2..i-1 }

for (int i= 2; i != 100; i= i + 1) {

// Set fresh variable b to "i is prime";
boolean b= i > 1;

int k= 2;

// { invariant: b == i > 1 and no integer in 2..k-1 divides i }
while (b && k != i) {

if (i % k == 0) { b= false; }

k= k + 1;

}

if (b) { x= x + 1; }

}

Figure 7.6: Computing the number of primes in 2..99

Do not read the implementation of the first statement, which is given in Fig.
7.6 as a statement-comment (see Sec. 13.3.3). The purpose of the statement-com-
ment is to let you focus on one thing at a time. When reading the outer loop,
focus on what this statement does. Later, you can go back and see how this state-
ment is implemented by reading the code following it up until the first blank line.
And when focusing on how this statement is implemented, put the rest of the pro-
gram out of your mind.

This ability to read at various levels of abstraction is important, for it lets
you separate your concerns and focus on one thing at a time. Focus is the impor-
tant point here.

Some people will tell you that nested loops —one loop appearing in the
repetend of another— are difficult to understand. They are, if loops are not prop-
erly annotated or well structured. But in our view, the program segment of Fig.
7.6 does not have nested loops! The repetend of the outer loop is:

Set fresh variable b to "i is prime";
if (b) { x= x + 1; }

and, in this view, there is no concept of a loop.

7.7.2 How not to program

A student developed the code of Fig. 7.7. We have abstracted away from the task
and cleaned up the code in order to make it easier to make our point. The pro-
gram did not work correctly, and it took him a long time to find out that c need-
ed to be set to 0 when r was incremented, as shown below:

// Process pairs (r,c), for 0 ≤ r < R, 0 ≤ r < C
int r= 0; int c= 0;

while (r != R) {

while (c != C)

{ Process pair (r,c); c= c + 1; }

r= r + 1; c= 0;

}

But this code is not well designed. The handling of variable c —initializing

Activity
7-6.3

The point made
in this para-
graph is much
better made in
Activity 7-6.2!

7.7 Miscellaneous points about loops 263

// Process pairs (r,c), for 0 ≤ r < R, 0 ≤ r < C
int r= 0; int c= 0;

while (r != R) {

while (c != C) {

Process pair (r, c); c= c + 1;

}

r= r + 1;

}
Figure 7.7: A program segment with an error

it to 0 and then setting it to 0 again at the end of the outer repetend— is just not
good programming practice, as we will see in a moment.

The student's programming strategy
When asked about the absence of comments, the student replied that he had

not gotten around to those yet.

My way of programming is to write the program first, and later to
fill in statement-comments and loop invariants and things.

He said this in spite of all our discussions of good programming practices and in
spite of all our examples of top-down design. And his practices led to an error
that took him a great deal of wasted time to find and to a bad design. In fact, pro-
viding comments after the fact is a waste of time.

When pressed for the invariant of the outer loop and for a statement-com-
ment for the repetend of the outer loop, after some time and with help, the stu-
dent said that the invariant was:

invariant: pairs (i, 0..C-1) with 0 ≤ i < r have been processed

And along with this came the statement-comment for the repetend:

Process pairs (r, 0), …, (r, C - 1)

so that the segment could be interpreted as:

// Process pairs (r, c), for 0 ≤ r < R, 0 ≤ r < C
int r= 0; int c= 0;

// inv: pairs (0..r-1, 0..C-1) have been processed
while (r != R) {

Process pairs (r, 0), …, (r, C - 1)

r= r + 1; c= 0;

}

264 Chapter 7 Loops

// Process pairs (r,c), for 0 ≤ r < R, 0 ≤ r < C
int r = 0;

// invariant: pairs (0..r-1, 0..C-1) have been processed
while (r != R) {

// Process pairs (r, 0), …, (r, C - 1)

int c= 0;

// invariant: pairs (r, 0), …, (r, c - 1) have been processed
while (c != C) {

Process pair (r, c); c= c + 1;

}

r= r + 1;

}

Figure 7.8: A well-designed segment to process pairs

In this version, c is not mentioned in the invariant, so why is it set to 0 in two
places? What purpose does it serve? What meaning would you give c if it were
to be mentioned in the invariant? Variable c has no place in the program, and it
should be deleted. There is absolutely no reason for it being in there.

After removing c and then implementing the statement:

Process pairs (r, 0), …, (r, C - 1)

we wind up with the program segment of Fig. 7.8. There is a variable c, but it is
local to the implementation of the above statement.

We now have a well-designed program segment.

7.8 Key concepts

• Loop. A repetitive statement, or iterative statement, or loop is a statement that
calls for the repeated execution of its repetend.

• While-loop. The while-loop has the form: while (condition) repetend.

• For-loop. The for-loop has the form: for (initialization ; condition ; progress
) repetend. It can be viewed as an abbreviation of a while-loop that has a loop
counter.

• Loop invariant. A loop invariant is a relation that is true before and after each
loop iteration. A loop is understood in terms of the loop invariant by answering
four loopy questions:

1. How does it start? What assignments make the invariant true
initially?

2. When does it stop? The invariant, together with the falsity of
the loop condition, has to imply that the postcondition is true.

3. How does it make progress? Execution of the repetend has to
ensure that after a finite number of iterations the loop terminates.

4. How does it fix the loop invariant? Each execution of the
repetend begins with the invariant true, and it must end with it
true as well.

• Nested loops. Abstraction should be used to hide nested loops: use a statement-
comment that says what the repetend does, which can be used to understand the
outer loop without thinking in terms of nested loops.

Exercises for Chapter 7

Many of these exercises ask you to write a loop (with initialization), given the
task to be performed, a postcondition, and loop invariant. Develop the loop using

Exercises for Chapter 7 265

the four loopy questions. This allows you to separate your concerns. For exam-
ple, when writing the initialization, you do not worry about the loop condition or
repetend, you just ask yourself what needs to be done to truthify the invariant.
When you are finished writing the loop, test it in your IDE! That is the only way
to be sure you did it properly.

E1. Write four loops (with initialization) to store in x the product of the integers
in the range 2..10. The postcondition R is: x is the product of 2..10.

(a) Use this invariant P1. It was created by replacing constant 10 in R by k:

P1: 2 ≤ k ≤ 10 and x is the product of 2..k

(b) Use this invariant P2. It was created by replacing constant 10 in R by k - 1:

P2: 2 ≤ k ≤ 11 and x is the product of 2..k-1

(c) Use this invariant P3. It was created by replacing constant 2 in R by k:

P3: 2 ≤ k ≤ 10 and x is the product of k..10

(d) Use this invariant P4. It was created by replacing constant 2 in R by k + 1:

P4: 1 ≤ k ≤ 10 and x is the product of k+1..10

E2. Write four loops (with initialization) to determine whether an integer n is
divisible by an integer in the range first..last, where first ≤ last. The
answer is stored in a boolean variable b: the postcondition R is:

R: b = "n is divisible by an integer in first..last"

(a) Use this invariant P1, which was created by replacing last in R by k:

P1: b = first - 1 ≤ k ≤ last and
"n is divisible by an integer in first..k"

(b) Use this invariant P2. It was created by replacing constant last in R by k-1:

P2: first ≤ k ≤ last + 1 and

b = "n is divisible by an integer in first..k-1"

(c) Use this invariant P3. It was created by replacing constant first in R by k:

P3: first ≤ k ≤ last+1 and b = "n is divisible by an integer in k..last"

(d) Use this invariant P4. It was created by replacing constant first in R by k+1:

P4: first-1 ≤ k ≤ last and
b = "n is divisible by an integer in k+1..last"

E3. Given is n > 0. Write a loop (with initialization) to store in k the largest
power of 2 that is at most n. Note that 20 = 1. The obvious way to calculate k is
to successively set k to 1, 2, 4, 8, ... until the right power of 2 is reached. Use the

266 Chapter 7 Loops

postcondition R and invariant P shown below. Note how P is R with the last con-
straint n < 2k+1 remove:

R: 1 ≤ 2k ≤ n < 2k+1

P: 1 ≤ 2k ≤ n

E4. Write a loop to calculate the quotient q and remainder rwhen x ≥ 0) is divid-
ed by y (> 0), using just addition and subtraction (no multiplication or division).
The four variables are related by this formula:

x / y = q + r / y where 0 ≤ r < y
i.e. x = y * q + r where 0 ≤ r < y

Use the loop invariant P:

P: x = y * q + r* and 0 ≤ r

which arises from the formula by deleting the constraint r < y.

E5. Given is x > 0 and y > 0, both integers. Find the greatest common divisor of
x and y, written as x gcd y. This is the largest integer that divides both. Use these
properties of gcd:

x gcd y = (x-y) gcd y

x gcd y = x gcd (y-x)

x gcd x = x

Use two fresh variables b and c and the following postcondition and invariant:

R: b = x gcd y

P: b gcd c = x gcd y

E6. Write code to delete all the vowels in String t. Here is the outline:

StringBuffer s= new StringBuffer(t);

Delete the vowels in s.
t= s.toString();

Answer the four loopy questions to develop the loop using the following invari-
ant and postcondition:

invariant: s[0..k-1] contains no vowels and k != s.length().
// postcondition R: s[0..s.length()-1] contains no vowels

Hint: Use StringBuffer method deleteCharAt. Also, be wary of your
increment: you can make progress in two different ways.

E7. Deoxyribonucleic acid, or DNA for short, is the building block of all life.
Each strand of DNA consists of two strings of bases twisted together to form a
double helix. There are four bases, which are represented by the letters G, A, T
and C. In a double helix, the letters A and T bond together, as do the letters C and
G. The two sequences in a helix, then, are complements of each other. For exam-

Exercises for Chapter 7 267

ple, these two sequences are complements of each other:

sequence 1: ACGTTAC

sequence 2: TGCAATG

Notice how the A’s and T’s line up with each other, as do the C’s and G’s. Write
a loop to determine if two Strings s1 and s2 representing DNA sequences are
complements of each other. What do you need to assume about the lengths of
those Strings?

E8. Write a loop to produce the DNA complement of a String s.

E9. The Fibonacci numbers are the numbers 0, 1, 1, 2, 3, 5, 8, …. Each number is
the sum of the previous two. This recurrence relation describes the sequence:

f0 = 0

f2 = 1

fn = fn-1 + fn-2 for n > 1

Write code that finds Fibonacci number n, where n > 1. Use this invariant:

invariant: a = fi and b = fi-1
postcondition: i = n (and, therefore, a = fn)

E10. Write a loop that reads a file containing integers and computes their sum.

E11. Write a loop that reads a file containing integers and computes how many
even integers and how many odd integers it contains.

E12. Compound interest on an account is computed as follows: if an account has
balance balance, and the annual interest rate is rate, the next year’s balance is
this:

balance + balance * rate

Write a program segment that reads the initial dollar balance (a double), the
interest rate (also a double, such as .07 to represent a 7% interest rate), and the
number of years to calculate (an int), and computes the final balance in the
account.

E13. Write a loop (with initialization) that generates an approximation to e, the
“base of the natural logarithm”, using this formula:

e = 1 + 1/1! + 1/2! + 1/3! + 1/4! + ... + 1/k! + ...

(You can see what e is by evaluating Math.E.) Here, k! is “k factorial”, the quan-
tity 1*2*...*k. Use this invariant:

e = 1 + 1/1! + 1/2! + 1/3! + 1/4! + ... + 1/k! and
tk = 1/k!

Use type double for e and tk. At each iteration, calculate the next term

268 Chapter 7 Loops

1/(k+1)! to be calculated using tk. Terminate the loop when tk < .1*1013. How
many iterations does it take?

E14. Write a loop (with initialization) that generates an approximation to pi, the
ratio of the diameter of a circle to its circumference. Do the work as in exercise
E13, but use this formula to calculate approximations:

pi = 4 – 4/3 + 4/5 – 4/7 + 4/9 – ...

Is this feasible? How many iterations does it take?

E15. Write a loop (with initialization) that generates an approximation to pi, ratio
of the diameter of a circle to its circumference. Do the work as in exercise E14,
but use this formula to calculate approximations, where c is 2*sqrt(3):

pi = c – c/(3*31) + c/(5*32) – c/(7*33) + c/(9*34) – ...

Calculate c only once. Is this feasible —how many iterations does it take?

E16. Here is another way to calculate pi. Throw random darts at a disk of radius
1 that is inscribed in a 2x2 square. The fraction hitting the disk should be the ratio
of the area of the circle, to the area of the square: pi*r2 / (2r)2, or pi/4. To
throw a dart, calculate two random numbers (x, y) in the range -2..2. The dart
hits the disk if x2+y2 <= 1. Write a loop (with initialization) that calculates an
approximation to pi by throwing random 10,000 darts.

E17. Write a loop to count how many times the vowel "a" occurs in a string s.

E18. Write a loop to count how many vowels a string s contains.

E19. Write a loop to count how many pairs of adjacent equal characters are in a
string s. The string "bbbccd" contains three pairs of adjacent equal values.

Exercises for Chapter 7 269

Chapter 8

Arrays

OBJECTIVES

INTRODUCTION

Suppose a program has to maintain information about students enrolled in a uni-
versity. It is infeasible to declare a separate variable for each student! The Java
array —a list of variables of the same type— can be used in such situations.

8.1 Arrays of subscripted variables

The diagram below shows an array variable b and an array object a0, which con-
sists of four elements of type int:

The four variables are called the elements of the array, and as indicated in the
above diagram, they are numbered 0, 1, 2, and 3. They are referenced individu-
ally using the notation b[0], b[1], b[2], and b[3]. Mathematical notation writes
the numbers below the line, as in b2, and calls the numbers subscripts. Similarly,

a0

b a0 0

1

2

3

5

7

4

–2

Activities
8-1.2..3

• Learn how to declare an array variable.
• Understand that Java treats an array as an object.
• Learn how to create an array and store its name in a variable.
• Learn how to initialize array elements and reference them.
• Look at an array as a way to store a table of data of the same type.
• Learn fundamental algorithms for searching, sorting, and maintaining arrays.

272 Chapter 8 Arrays272 Chapter 8 Arrays

the value 2 in b[2] is called the subscript, or index, of the array element. We call
b[2] a subscripted variable.

The range of an array is the set of values that can be used as indices. The
range of b consists of 0, 1, 2, and 3; we write this range as 0..3.

The following statement stores the sum of b[0] and b[1] in variable b[3]:

b[3]= b[0] + b[1];

Any int expression can be used as an index. For example, if an int variable
x has the value 5, b[x – 4] refers to subscripted variable b[1].

8.1.1 Declarations of arrays

Below, we show a declaration of an array:

int[] b;

The notation int[] is read as “int array”, and b’s type is int[]. Arrays are
objects. Just as the declaration:

String s;

does not create a String object, b’s declaration does not create an array object.
It merely declares that variable b can contain the name of an int array object.

Type int is called the base type of the array. Any type can be used as the
base type. Here is a declaration for an array of strings:

String[] s;

8.1.2 Creating an array

To create an array object and assign it to b, use a new-expression in an assign-
ment statement. The new-expression syntax is slightly different from other new-
expressions; no constructor is called. Here is an example:

b= new int[4];

Java syntax: Subscripted variable
array [int-expression]

Examples: b[5]= b[4] + 2;

Purpose: To access an array element, to either retrieve its
value (as in b[4]) or change it (above, b[5] is changed).

Common error. When using a subscripted variable b[i], the value of imust be within the range
of b —one of the values in 0..b.length - 1. If i is not in range, an IndexOut-
OfBoundsException occurs and execution aborts. Get in the habit of always
asking yourself, with each variable b[i] you write, whether i is within range.

Execution of this statement proceeds as follows:

1. Evaluate the new-expression: create an array of 4 int variables, give it a
name (e.g. a0), and yield as the result of the expression the name (a0).

2. Store the name a0 in array variable b.

Once the array has been created, its size cannot be changed, so you have to
figure out how many elements it should have before creating it.

You can combine declaration and initialization in an initializing declaration:

int[] b= new int[4];

8.1.3 Referencing the length of an array

Every array object has a fixed field length, which contains the number of ele-
ments in the array. Thus, if b is an array variable, the expression:

b.length

is the number of elements in, or length of, array b. Note that length is a variable
and not a function, so no parentheses appear after it.

The loop below sets all the elements of array b to 72:

// inv: elements b[0..i-1] have been set to 72
for (int i= 0; i != b.length; i= i+1) {

b[i]= 72;

}

8.1.4 Array initializers

The following sequence of statements creates an array c that contains the values
5, 6, 3, 4, and 4, but it is rather cumbersome:

int[] c= new int[5];

c[0]= 5; c[1]= 6; c[2]= 3; c[3]= 4; c[4]= 4;

Activities
8-1.4..5

Activity
8-1.3 shows
execution of
such a loop

Activity
8-1.2

8.1 Arrays of subscripted variables 273

Programming tip: Rather than typing 4 for the array size throughout your program, use
b.length. That way, if you decide to change the size of the array, you need to
make changes in only one place, where the array is created.

Java syntax: Array type
type []

Example: int[]

Meaning: type[] is the type of an array
whose elements are of type type.

Java syntax: new-array expression
new type [int-expression]

Example: new double[15]

Purpose: Evaluation creates an array object
with expression elements, all of type type, and
has as its value the name of the object.

Instead, you can use an array initializer:

int[] c= new int[] {5, 6, 3, 4, 4};

The new-expression in this assignment creates an array whose size is the num-
ber of values in the list, assigns the given values to the array elements, and yields
as its value the name of the new array.

The next example illustrates two things. First, in an initializing declaration,
the part “new type[]” can be omitted. Second, arbitrary expressions can be used
as the expressions in an array initializer:

String[] s= {"Monday",

new String("Tuesday"),

"Wed" + "nesday"};

This creates a String array of three elements whose values are the strings
"Monday", "Tuesday", and "Wednesday". (Of course, the second and third
expressions can be written more simply.)

You can omit “new type[]” only in an initializing declaration and not, for
example, in a simple assignment statement. Thus, the following is illegal:

c= {5, 6, 3, 4, 4}; // Illegal

8.1.5 Consequences of arrays as objects

Suppose we have two int[] variables b and c and a 4-element array:

In this situation, we can create aliasing by executing this assignment:

c= b;

This stores in c the value that is in b:

a0

b a0

c null

0

1

2

3

5

7

–2

7

274 Chapter 8 Arrays

Java syntax: Array initializer
new type { expr1, ..., exprn }

Example: new int[] {3, 5, 2}

Example: int[] b = {3, 5, 2};

Purpose: Create an array with the elements given in the list.
In an initializing declaration, “new type” is not needed.

Consequently, b and c now refer to the same array. An assignment such as:

b[1]= 6;

changes not only b[1] but also c[1], since b[1] and c[1] are one and the same.

8.1.6 Passing an array as an argument

Consider this procedure:

public void proc(int p1, int[] p2) {

p1= 5;

p2[1]= 6;

}

and a call to it, where b contains the name a0 of an int[] array object:

proc(10, b);

The frame for the call contains parameters p1 and p2, with values 10 and a0:

Notice that b and p2 refer to the same array object.
You already know that the assignment p1= 5; in the body of procedure proc

has no effect outside the method; it changes only parameter p1, not the corre-
sponding argument. But, since p2 contains a0, the assignment p2[1]= 6;

changes array a0 and thus has an effect outside the procedure.
Because Java passes arguments “by value”, it is impossible to write a pro-

cedure that is consistent with this specification:

/** Swap x and y */
public static void swap(int x, int y)

However, we can write a procedure that swaps two array elements:

proc: 1

p1 10 p2 a0
...

a0

b a0

c a0

0

1

2

3

5

7

–2

7

8.1 Arrays of subscripted variables 275

/** Swap b[i] and b[j] */
public static void swap(int[] b, int i, int j) {

int temp= b[i];

b[i]= b[j];

b[j]= temp;

}

This fact will be quite useful for writing code for sorting arrays.

8.1.7 Initializing class-type arrays

Be careful when creating an array whose base type is some class type, for the
array element themselves are initially null. Consider the following statement:

String d= new String[4];

After execution, each element of d automatically contains null, as shown to the
left in Fig. 8.1. String objects must be explicitly created; for example, after the
assignment d[2]= "xyz";, the array is as shown in the right diagram of Fig. 8.1.

8.2 Talking about array segments

In every scientific field, notation is developed to concisely and clearly discuss
concepts of that field. It will help us to take some time to do the same for talk-
ing about arrays.

8.2.1 Range notation: h..k

We have already introduced the notation 4..7 to stand for the range of integers
4, 5, 6, and 7. In general, we can use integer expressions instead of constants.
Here are two examples:

h..k stands for the collection of integers h, h + 1, h + 2, …, k – 1, k.
The range of an array b is 0..b.length – 1.

By convention, the range h..h - 1 stands for an empty collection of integers.
Thus:

276 Chapter 8 Arrays

Figure 8.1: Initializing array elements

d a0

a0

d a0

a1

"xyz"

Stringnull

null

a1

null

a0

null

null

null

null

h..h+2 stands for the set of 3 integers h, h + 1, and h + 2.
h..h+1 stands for the set of 2 integers h, h + 1.
h..h stands for the set of 1 integer, h.
h..h–1 stands for the set of 0 integers.

The last example may seem strange to you, but this convention simplifies array
discussions tremendously. We could have chosen to have h..h–1 be undefined,
but that would not be as useful.

We often talk about a segment of an array: a sequence of adjacent elements
like b[4], b[5], b[6], b[7], using the range notation in the subscript position:
b[4..7]. To denote a segment b[h..b.length-1], we may omit the last index
and write b[h..].

8.2.2 Horizontal descriptions of arrays.

Instead of a vertical representation of an array, we often use a horizontal version,
as shown below. And we often simplify the picture: we place the name of the
variable directly next to the array and omit the name of the array. (Do not change
your mental picture! An array variable still contains the name of an array object.)
Note that we put the indices of the array elements above the elements, not below.

It helps to think of an array as being partitioned into several segments rather
than individual elements. The first segment pictured below is b[0..3]; the sec-
ond is b[4..b.length–1]. We place a number after a segment boundary (e.g. 4)
to indicate the subscript of the first element of a segment. We place a number
before the boundary to indicate the last subscript of the segment.

As a final example, we show an array with three segments, with variables

marking the boundaries. The segments are b[0..i–1], the segment consisting of
the individual element b[i], and the segment b[i+1..]. If i is 3, the three seg-
ments are b[0..2], b[3..3], and b[4..].

A warning: the picture gives the impression that segment b[0..i–1] cannot

be empty. But if i is 0, the first segment is b[0..0–1], so it is an empty segment.
In this case, the second segment consists of the first element of the array, b[0],

Activity
8-2.2

b

0 3 4 b.length

0 i b.length

8.2 Talking about array segments 277

b

4 6 -5 2b

0 1 2 3

and the third segment contains all but the first array element. To picture this men-
tally, think of dragging i all the way to 0. That squishes the first segment and
stretches the right segment to take up most of the array.

8.2.3 Placing information in a segment

We can place information within a segment to describe its properties. In the
example below, we place “< 3” in segment c[0..i–1] to assert that all its ele-
ments are less than 3. Similarly, we place “= 2” in the right segment to indicate
that all its elements equal 2.

This picture describes a relationship between the contents of array c and

integer variable i. We call this relation P. We can write Pwithout using a picture:

P: c[0..i–1] < 3 and c[i] = 5 and c[i+1..] = 2

Whether you prefer the picture or the formula is a matter of taste. The pic-
ture is easier to understand for most people, while the second version is usually
easier to work with when developing an algorithm.

Relations may be true or false, depending on the values of the variables they
reference. For example, P is a false statement if the first element of c is 4, no mat-
ter what the value of i. And P is true if i = 0 and c contains {5, 2, 2, 2} —the
first segment is empty, so every element in that segment is indeed less than 3; the
second segment contains a 5; and the third segment is all 2’s.

Below are two more examples of relations. Relation Q1 says that the first
segment b[0..i-1] is sorted, which means that its values are in non-descending
order. For example, Q1 is true if i = 4 and b = {1, 3, 4, 4, -5, 2} but is false if i
= 3 and b = {1, 4, 3, 3, 6, 8, 2}. Relation Q1 is used later in algorithm
insertionSort, which sorts array b.

0 i b.length

Q1: b sorted

Activity
8-2.3

278 Chapter 8 Arrays

Programming tip: When you draw horizontal arrays, do not place a variable (e.g. m) directly
over a boundary, as shown below, because you cannot tell whether it marks the
end of the preceding segment or the beginning of the following segment. This
ambiguity leads to confusion. It will not make your instructor chuckle.

0 m

b

0 i c.length

c < 3 5 = 2

Relation Q2 is like Q1, but it also requires that everything in the first segment be
at most everything in the second. Q2 is used in algorithm selectionSort, which
is another sorting algorithm.

8.3 Processing array segments

8.3.1 Printing an array segment

We describe how to develop an array-printing algorithm using a relation. We can
print the four values in array segment c[h..h+3] on different lines using four
print statements. However, we cannot print the elements of c[h..k–1] in this
manner because the number of elements is variable, and not a constant. Instead,
we use a loop. To develop the loop, first write a postcondition for the task (this
step is almost always easy):

postcondition R: c[h..k–1] has been printed

To find a loop invariant P, we replace expression k by a fresh variable i:

invariant P: c[h..i–1] has been printed

Here is a diagram for P:

How does it start? Since nothing has been printed initially, the invariant is
truthified by making segment c[h..i–1] empty, i.e. by setting i to h.

When is it done? When the invariant and the postcondition are the same.
That happens when i = k. Therefore, the loop should continue as long as i != k.
And we now know the range of i: h ≤ i ≤ k.

How does it make progress? i starts at h and moves toward k, so to make
progress toward termination, increment i.

How does it keep the invariant true? By printing c[i] before i is incre-
mented.

Here is the final loop (with initialization):

// Print c[h..k–1]
int i= h;

// inv: h ≤ i ≤ k and c[h..i–1] has been printed
while (i != k) {

System.out.println(c[i]);

i= i + 1;

}

h i k

P: b these have been printed

0 i b.length

Q2: b sorted, ≤ b[i..] ≥ b[0..i – 1]

8.3 Processing array segments 279

Because this loops over a range, a for-loop could have been used instead:

// Print c[h..k-1]
// inv: h ≤ i ≤ k and c[h..i–1] has been printed
for (int i= h; i != k; i= i + 1) {

System.out.println(c[i]);

}

8.3.2 A schema to process arrays

We step back from the loop above and make it more abstract, as shown below.
First, instead of printing each array element, we say to “process it”. Next, the
invariant indicates what has been processed instead of what has been printed.
Most of the loop remains the same! Only the repetend is changed, into an English
statement to process element c[i].

// Process elements of c[h..k–1], in order
// inv: h ≤ i ≤ k and c[h..i–1] has been processed
for (int i= h; i != k; i= i + 1) {

Process c[i]

}

Whenever you have to process an array segment, you can use this schema
rather than develop the loop from scratch.

8.3.3 A schema to process in reverse

We develop a program schema to process the elements of array segment
c[h..k–1], but in reverse order. First we write a postcondition:

postcondition: c[h..k–1] has been processed in reverse order

Now we find a loop invariant P. Since the elements are to be processed from
the end to the beginning, we replace expression h by a fresh variable i:

invariant P: c[i..k–1] has been processed in reverse order

We now develop a for-loop.
How does it start? Because nothing has been processed initially, we truthify

the invariant by setting i to k, making segment c[i..k–1] empty.
When is it done? Given the invariant, the postcondition is true when i = h.

Therefore, the loop should continue as long as i differs from h. And we now
know the range of i: h ≤ i ≤ k.

How does it make progress? Variable i starts at k and moves toward h, so to
make progress toward termination, decrement i.

How does it keep the invariant true? From the loop invariant, we see that
array element c[i – 1] should be processed.

Activity
8-3.2

See lesson 8.3
to get these
schemas from
ProgramLive.

280 Chapter 8 Arrays

We end up with this algorithm:

// Process the elements of c[h..k-1] in reverse order
// inv. P: h ≤ i ≤ k and c[i..k–1] has been processed
for (int i= k; i != h; i= i – 1) {

Process c[i - 1]

}

This algorithm has a somewhat awkward loop body in that it processes c[i
– 1] and not c[i]. Let us change the algorithm so that the body can process
c[i]. To do this, we need a new invariant for our postcondition:

postcondition: c[h..k–1] has been processed in reverse order

On the first iteration, c[k - 1] is to be processed. So i has to start at k – 1.
Choosing this initialization forces us to use this invariant, replacing h with i + 1
instead of i:

inv: P: c[i + 1..k–1] has been processed

To make the range empty, i has to be initialized to k – 1. The invariant and
the postcondition mean the same thing when i = h – 1. The range of i is now
this: h – 1 ≤ i< k. Progress toward termination is still done by decrementing i:

// Process c[h..k–1], in reverse order
// inv: c[i + 1..k–1] has been processed and h – 1 ≤ i< k

for (int i= k – 1; i != h – 1; i= i – 1) {

Process c[i]
}

Activity 8-3.3 develops an algorithm from this schema for reading in a list
of values and printing them in reverse order.

8.3.4 Example: using a schema

This section illustrates the use of the loop schema from Sec. 8.3.2. We develop a
function (see Fig. 8.2) that calculates the number of values in array b that are less
than a given value v. For example, for array b = {8, 2, 3, 5, 7} and value v = 5,
the function returns 2 because two elements of b are less than 5. Here is a spec-
ification of the function:

/** = number of elements of b that are less than v */
public static int numberLess(int[] b, int v)

How will this function be used? Given array d = {3, 5, 2, 7, 3}, the statement

Activity
8-3.4

Activity
8-3.3

See lesson
page 8-3 to get
this program.

8.3 Processing array segments 281

Programming tip: After you use a schema a few times, you will have digested it and will not
have to look it up anymore. Be sure to always include the loop invariant because
it is important for others to understand how the loop performs its task.

int x= numberLess(d, d[0]);

stores 1 in x because one element of d is less than d[0].
The method body must process array segment b[0..b.length-1], so we

use this loop schema for processing an array segment:

// Process elements of c[h..k-1], in order
// inv: h ≤ i ≤ k and c[h..i–1] has been processed
for (int i= h; i != k; i= i + 1) {

Process c[i]
}

Instead of array c, we have b; instead of h, we have 0; and instead of k we have
b.length:

// Process elements of b[0..b.length-1], in order
// inv: 0 ≤ i ≤ b.length and b[0..i–1] has been processed
for (int i= 0; i != b.length; i= i + 1) {

Process b[i]
}

What does it mean to process an element b[i]? If the element is less than
v, we want to count it, so we need a variable n to accumulate the result: n is the
number of elements in segment b[0..i–1] that are less than v, so “Process
b[i]” means to add 1 to n if b[i] is less than v.

What value should n have initially? At the beginning, no elements have been
processed, so n must be initialized to 0.

The final step is to return n.
This ends the development. See Fig. 8.2 for the complete function.

See lesson 8-3
to get this pro-

gram.

Activity 8-3.5
shows you how

to test it.

282 Chapter 8 Arrays

/** = number of elements of b that are less than v */
public static int numberLess(int[] b, int v) {

int n= 0; // number of elements less than v in b[0..j–1].

// Process elements of b[0..b.length-1], in order
// inv: 0 ≤ i ≤ b.length and the definition of field n
for (int i= 0; i != b.length; i= i + 1) {

if (b[i] < v)

{ n= n + 1; }

}

return n;

}

Figure 8.2: Function numberLess

8.3.5 Checking equality of arrays

Suppose a1 and a2 are of type int[]. They contain the names of array objects
(and not the arrays themselves), so a1 == a2 tests whether a1, a2 contain the
same name rather than whether the array contents are equal. We write a method
to compare the contents:

/** = "arrays a1 and a2 are equal" */
public static boolean equals(int[] a1, int[] a2)

The method is a function, and it returns true if the arrays are equal and
false otherwise. The arrays are equal if (1) the parameters have exactly the same
value or (2) the array objects have the same length and their corresponding ele-
ments are equal.

If a1 and a2 both are null, or if they contain the same array name, the func-
tion returns true. (In many situations, a method may require its array parameters
to be not null. Here, it makes sense to allow null array arguments.)

If one of a1 and a2 contains null but the other does not, the arrays are not
equal, so the function returns false.

If a1 and a2 have different lengths, the function returns false.
At this point, the arrays have the same length, so their elements have to be

compared for equality. We use the loop schema from Sec. 8.3.2:

// Process elements of c[h..k-1], in order
// inv: h ≤ i ≤ k and c[h..i–1] has been processed
for (int i= h; i != k; i= i + 1)

{ Process c[i] }

Instead of array c, we have a1; instead of h, we have 0; and instead of k we have
a1.length. We also update the invariant.

See lesson
page 8-3 to get
this program.

Activity 8-3.5
shows you how

to test it.

Activity
8-3.6

8.3 Processing array segments 283

/** = "arrays a1 and a2 are equal" */
public static boolean equals(int[] a1, int[] a2) {

if (a1 == a2) { return true; }

if (a1 == null || a2 == null) { return false; }

if (a1.length != a2.length) { return false; }

// Return false if a1[i] != a2[i] for some i.
// inv: 0 ≤ i ≤ a1.length and a1[0..i–1] = a2[0..i–1]

for (int i= 0; i != a1.length; i= i + 1) {

if (a1[i] != a2[i])

{ return false; }

}

return true;

}

Figure 8.3: Function equals, to check the equality of arrays

// Process elements of a1[0..a1.length-1], in order
// inv: 0 ≤ i ≤ a1.length and a1[0..i–1] = a2[0..i–1]
for (int i= 0; i != a1.length; i= i + 1) {

Process a[i]
}

What does it mean to process an element a1[i]? Here, it means to return
false if a1[i] is not equal to a2[i].

Because the loop processes every element, if the loop terminates without
returning, return true at the end of the method.

This ends the development of the code. Fig. 8.3 contains the function.

8.3.6 Returning an array

Just as an array can be an argument of a method, it can be the result of a func-
tion. To indicate that the result is an array, just use the array type as the return
type. We illustrate this with a function that produces a copy of an array segment:

/** = a copy of array segment b[x..y] */
public static int[] copy(int[] b, int x, int y)

How will the function be used? We give examples when d={3, 5, 2, 7, 3, 8}:

First, create a new array result in which to accumulate the result. Its size
is the size of the array segment to be copied:

int[] result= new int[y + 1 – x];

We now have to write code to copy the elements of b[x..y] to
result[0..]. We again use the loop schema from Sec. 8.3.2:

call result call range result range
copy(d, 0, 2) {3, 5, 2} 0..2 0..2

copy(d, 1, 4) {5, 2, 7, 3} 1..4 0..3

copy(d, 2, 5) {2, 7, 3, 8} 2..5 0..3

copy(d, 2, 1) {} 2..1 0..-1

copy(d, i, j) {...} i..j 0..(j-i)

See lesson
page 8-3 to get
this program.

Activity
8-3.7

284 Chapter 8 Arrays

Programming tip: Procedure arraycopy in class System of package java.lang will copy an
array segment. To copy the k items in b[i..i+k-1] to c[h..h+k-1], use

System.arraycopy(b, i, c, h, k);

The copy works even if b and c refer to the same array object and the two seg-
ments overlap. See the API specification for details.

// Process elements of c[h..k-1], in order
// inv: h ≤ i ≤ k and c[h..i–1] has been processed
for (int i= h; i != k; i= i + 1) {

Process c[i]
}

We could use either b or result in place of c. We choose b, so instead of h we
have x and instead of k - 1 we have y (i.e. instead of k we have y + 1):

// Process each element of b[x..y], in order
// inv: x ≤ i ≤ y + 1 and b[x..i–1] has been processed
for (int i= x; i != y + 1; i= i + 1) {

Process b[i]
}

Where in result do we put element b[i]? The first element b[x] goes into
result[0], so b[i] goes into result[i - x]:

result[i - x]= b[i];

The invariant must say that everything before index i has been copied:

inv: b[x..i–1] has been copied to result[0..i–x–1]

After the loop terminates, the array segment has been copied to result.
This completes the development of the function to copy an array segment.

See Fig. 8.4 for the function.

8.4 Storing tables of values in arrays

Consider maintaining a table of results of experiments, perhaps the number of
seconds it takes a rat to run through a maze. A program may start off with no
results in an array runningTimes (say) and, as the rat is run through the maze
again and again, new results are added. Since the array size is given when the
array is first created, the size must be large enough to contain all the experiment

8.4 Storing a table of values in an array 285

/** = a copy of array segment b[x..y] */
public static int[] copy(int[] b, int x, int y) {

int[] result= new int[x + 1 – y];

// Process each element of b[x..y], in order
// inv: x ≤ i ≤ y + 1 and b[x..i–1] has been copied to c[0..i–x–1]
for (int i= x; i != y+1; i= i + 1) {

result[i - x]= b[i];

}

return result;

}

Figure 8.4: A function to copy an array segment

results that will be added to it. We call the value runningTimes.length the
capacity of the table —the total number of times the rat may be run through the
maze. The program must maintain, in some fashion, the number of times the rat
has been run so far, that is, the current size of the table. This is usually done using
an int variable. The usual convention is to declare the following:

// Table of running times is runningTimes[0..numberOfRuns – 1]

double[] runningTimes;

int numberOfRuns;

Here, we have declared not only the array but variable numberOfRuns, which
says how many running times are in the table. Further, the comment says where
these times are stored in the array —in the first numberOfRuns elements. Here is
an example array, which contains four running times.

We place a question mark in section runningTimes[numberOfRuns..] to indi-
cate that we do not know (or care) what values are in it.

Adding a new running time t (say) would then be done as follows —taking
the approach that the insertion is done only if there is room and that a message
is printed if there is no room:

if (numberOfRuns < runningTimes.length) {

runningTimes[numberOfRuns]= t;

numberOfRuns= numberOfRuns + 1;

} else {

System.out.println("Sorry, array is full");

}

Sometimes we may want to delete the last value, perhaps because of a typ-
ing mistake. That is easy: simply decrement runningTimes:

runningTimes= runningTimes - 1;

Doing this when the table has four values, as shown above, terminates in this
state:

Element runningTimes[3] still contains the value 47.2. But we do not care
about it; only elements runningTimes[0..numberOfRuns-1] are relevant.

In other situations, we may want to remove an arbitrary element running-
Times[i], where 0 ≤ i < numberOfRuns, as shown below:

0 1 2 numberOfRuns runningTimes.length

r29.5 99.9 99.0 47.2 ?

0 1 2 3 numberOfRuns runningTimes.length

runni29.5 99.9 99.0 47.2 ?

286 Chapter 8 Arrays

How this is done depends on whether the order of the values in the table
must remain the same. If so, then code of the following form is needed:

numberOfRuns= numberOfRuns – 1;

Copy runningTimes[i + 1..numberOfRuns]

to runningTimes[i..numberOfRuns–1]

Obviously, the time taken is proportional to the number of values to be copied.
If the order of the values does not matter, there is a much simpler and faster

way to perform the task: just move the last element to runningTimes[i]:

numberOfRuns= numberOfRuns – 1;

runningTimes[i]= runningTimes[numberOfRuns];

(This works even if i = numberOfRuns – 1, in which case the last element is
being removed. In this case, the second assignment has no effect, since it assigns
runningTimes[i] to runningTimes[i]. It is better to leave the code like this
than to use an if-statement to test for a special case; avoid unnecessary case
analysis.)

8.4.1 Changing the size of an array

As mentioned earlier, the size of an array object is determined when the array is
first created, and it cannot be changed. However, it is possible to make it look
like the array size has been changed by creating a second, larger, array and copy-
ing the first array into the beginning of the second. Naturally, doing this takes
time, and this copying should not be done often. To prevent frequent copying,
and also limit unused space, it is common to double the size of the array. Here is
code to perform this service:

// Double the size of array runnningTimes (if size > 0)
double[] temp= new double[2 * runningTimes.length];

System.arraycopy(runningTimes, 0, temp,
0, runningTimes.length);

runningTimes= temp;

This code can be executed whenever array runningTimes runs out of space,
instead of simply giving an error message and aborting program execution. See
also ProgramLive activities 8-4.4 and 8-4.5.

0 i numberOfRuns runningTimes.length

xxxxx y zzzzzzzz

xxxxx zzzzzzzz

0 i numberOfRuns runningTimes.length

8.5 Basic array algorithms 287

8.5 Basic array algorithms

There are a few fundamental array algorithms that programmers should know:

• linear search, for finding the first occurrence of a value in an array.
• finding the minimum value in an array.
• inserting a value into a sorted (in non-descending order) segment.
• partitioning an array.
• merging two sorted array segments.
• binary search for a value in an ordered array.
• insertion sort.
• selection sort.

We show some of the algorithms here; the rest can be found in ProgramLive.
It is difficult to memorize the code for these algorithms. Instead, memorize

the loop invariant and develop the algorithm from the invariant whenever nec-
essary. Here is a less threatening way to say that: remember the pictures and
develop code based on them.

8.5.1 Linear search

We develop an algorithm to satisfy this specification:

/** = the index of the first occurrence of v in b[h..k–1]
—or k if v is not in b[h..k-1] */

public static int linearSearch(int[] b, int h, int k, int v)

How will this function be used? Examples when d = {3, 5, 1, 7, 3, 8}:

Activity 8-5.1 of ProgramLive explains linear search by giving the invariant
in terms of math formulas. Here, we draw diagrams. There are two possible post-
conditions of the method (we show only the part b[h..k-1] of the array):

Post 1:

Post 2:
v not in hereb

h k,i

v not in here vb

h i k

call result
linearSearch(d, 0, 2, 3) 0

linearSearch(d, 0, 2, 4) 2

linearSearch(d, 4, 6, 8) 5

linearSearch(d, 4, 6, 2) 6

linearSearch(d, 4, 4, 2) 4

Activities
8-5.1..2

See lesson
pages 8-5..6 to
get these algo-

rithms.

Lessons
8-5..6

288 Chapter 8 Arrays

We can combine the two like this to make postcondition R:

Post R:

and (i = k or b[i] = v)

To find the loop invariant, we investigate postcondition R. It is easy to ini-
tialize i so that b[h..i-1] does not contain v: just set i to h, since then
b[h..i–1] is empty and v is not in it. And, like the schema you have seen, that
array segment can grow. The second part of R, “either i = k or b[i] = v”, is real-
ly what we are trying to accomplish and may not be true with i = h. So, we take
just the first part of R as the invariant:

inv P:

How does it start? As discussed in the previous paragraph, we set i to h.
When is the loop done? When we have the piece of the postcondition that

we eliminated: when either i = k or b[i] = v. So the loop must continue as long
as this condition is false. Using De Morgan’s law:

not(A || B) = (not A && not B)

we see that the loop condition can be written in Java as: i != k && b[i] != v.
How does the repetend make progress? Increment i.
How does the repetend keep the invariant true? We get lucky: from the loop

condition, we see that the increment happens only when b[i] != v, so no other
work needs to be done.

See Fig. 8.5 for the complete method.

8.5.2 Finding the minimum value

We develop a function to return the index of a minimum value in an array seg-
ment:

Activity
8-5.3

v not in hereb

h i k

v not in hereb

h i k

8.5 Basic array algorithms 289

/** = index of first occurrence of v in b[h..k - 1] (= k if v is not in b[h..k – 1]) */

public static int linearSearch(int[] b, int h, int k, int v) {

int i= h;

// inv P: h ≤ i ≤ k and v is not in b[h..i – 1]}

while (i != k && v != b[i])

{ i= i + 1; }

return i;

}

Figure 8.5: Function linearSearch

/** = index of minimum value of b[h..k]. Precondition: h ≤ k. */
public static int min(int[] b, int h, int k)

Calling this function makes sense only if the array segment has at least one
value; hence the precondition.

How will this function be used? Examples when d = {1, 5, 1, 7, 3, 8}:

The call min(d, 0, 5) is interesting: the specification does not say which mini-
mum value will be returned if the minimum value occurs more than once.

The heart of this function is a loop to find the index m of a minimum value.
We now develop it. Because we are allowed to return the index of any smallest
value, we choose to return the first one. Here is the postcondition:

Post R:

We can get an invariant by replacing k by a fresh variable i:

inv P:

How does it start? At the beginning, the smallest value found so far is in
b[h]. So we set both i and m to h.

When is it done? The invariant and postcondition look the same when i = k.
How does it make progress? Increment i to make unknown section smaller.

> v v ≥ v ?b

h m i k

> v v ≥ vb

h m k

call result
min(d, 0, 5) 0 or 2
min(d, 1, 5) 2

min(d, 3, 5) 4

min(d, 1, 1) 1

To watch this
algorithm exe-
cute, listen to
activity 8-5.3.

290 Chapter 8 Arrays

/** = index of minimum value of b[h..k]. Precondition: h ≤ k */
public static int min(int[] b, int h, int k) {

int m= h; int i= h;

// {inv: b[m] is the minimum of b[h..i]}
while (i != k) {

i= i + 1;

if (b[i] < b[m])

{ m= i; }

}

return m;

}

Figure 8.6: Function min

How does it keep the invariant true? If the new value at b[i] is smaller than
m, store m in i.

See Fig. 8.6 for the complete method. The loop could have been developed
by refining a suitable loop schema. Try this yourself!

8.5.3 Binary search

The linear search algorithm of Sec. 8.4.1 may have to look at all the elements of
the array segment that it is searching. If the array segment is in ascending order,
far fewer elements may have to be looked at because the search can stop as soon
as an element larger than v is detected. So, we now investigate an algorithm to
search a sorted array.

We develop an algorithm to satisfy this specification:

/** = index i such that R: b[h..i] ≤ v < b[i+1..k]

Precondition: b[h..k] is in non-descending order */

public static int binarySearch(int[] b, int h, int k, int v)

We determine what R means, using the fact that b is in ascending order. If v
occurs in b, the postcondition indicates that the index of the rightmost occurrence
of v is to be calculated. For example, if v is 6, the index of the rightmost 6 is to
be calculated.

Second, if v is not in b, for example, v = 3, then the index of the position
after which v could be inserted should be calculated. As another example of this,
if v is less than the first element, the value h – 1 should be returned because
b[h..h–1] < v < b[h..k].

How will this function be used? Examples when d = {1, 3, 3, 5, 7, 8}:

The heart of this function is a loop to find the index i of v, which we now
develop. To find the loop invariant, note that it is easy to truthify the first part of
postcondition R by setting i to h - 1, and it is easy to truthify the second part of
assertion R by setting i to k. But, obviously, we cannot do both! We break this
dependence of both parts on i by replacing expression i + 1 by a fresh variable
j, giving us the invariant:

P: b[h..i] ≤ v < b[j..k]

If it helps, write the invariant as a diagram:

call result
binarySearch(d, 0, 2, 3) 2

binarySearch(d, 0, 2, 4) 2

binarySearch(d, 4, 6, 8) 5

binarySearch(d, 4, 6, 2) 4

binarySearch(d, 4, 4, 2) 4

Activity
8-5.8

8.5 Basic array algorithms 291

P is then initially truthified by assigning h - 1 to i and k + 1 to j. Then,
b[h..h–1] and b[k+1..k] are empty segments.

The loop can terminate with R true only if j = i + 1. Therefore, it should con-
tinue as long as j and i + 1 are different. And, we can now place some obvious
bounds on i and j in the invariant:

P: –1 ≤ i < j ≤ k + 1 and b[h..i] ≤ v < b[j..k]

The repetend has to make progress by incrementing i or decrementing j. To
that end, let e be the average of i and j. Because i < j + 1, e lies strictly between
i and j. This means that setting either j or i to e will keep the second part of
invariant P true.

There are now two cases to consider: b[e] < v and v < b[e]. In the first case,
setting i to e keeps P true because b[h..e] < v. In the second case, setting j to
e keeps P true because v < b[e..k]. This ends the development of the repetend
and thus of the loop. The complete function is in Fig. 8.7.

Discussion
For an array segment of size 2n for some n ≥ 0, this binary search function

always makes n + 1 iterations, looking at n+1 array elements, no matter what the
contents of the array. For example, if the array size is 215 = 32768, it will look
at only 16 elements!

It may seem that stopping as soon as the value v is found would make the
algorithm faster. However, this requires a second test in the body of the loop —
one has to test for v < b[i] and v = b[i]— so the loop body is less efficient.

h i j k

≤ v > v

292 Chapter 8 Arrays

/** = the value i that satisfies R: b[h..i] ≤ v < b[i+1..k]

Precondition: b[h..k] is sorted. */

public static int binarySearch(int[] b, int h, int k, int v) {

int i= h – 1;

int j= k + 1;

// inv P: h – 1 ≤ i < j ≤ k + 1 and b[h..i] ≤ v < b[j..k]

while (j != i + 1) {

int e= (i + j) / 2;

// { h – 1 ≤ i < e < j ≤ k + 1 }

if (b[e] <= v) { i= e; }

else { j= e; }

}

return i;

}

Figure 8.7: Function binarySearch

Further, mathematical analysis has shown that stopping when v is found saves,
on the average, only one iteration. Thus, it is not worth it. Further, this binary
search has three other advantages over most of the other binary searches that you
will see in the literature:

1. It works when the array is empty (when h = k + 1).
2. Binary searches that stop when v is found find only a random v, and not

the rightmost one.
3. Binary searches that stop when v is found do not produce any indication

of where v should go if v is not in the array.

Moreover, this binary search algorithm is memorable; just remember the post-
condition and how you get the invariant from the postcondition, and you can eas-
ily develop the algorithm whenever necessary.

8.5.4 Selection sort

By an array b being “sorted” we mean that its values are in ascending order: i <
j implies that b[i] ≤ b[j]. To sort an array means to place its values in ascend-
ing order. We also say that an array is sorted in descending order if i < j implies
that b[i] ≥ b[j].

Sorting is a fundamental process in computing. Here, we look at one sort-
ing algorithm, selectionSort. Another one, insertionSort, is described in
ProgramLive activity 8-6.3. Both of these sort algorithms are “quadratic” algo-
rithms, in both the average case and worst case. This means that for an array of
size n (say), their execution times are proportional to n2. For example, it will
take 10,000 units of time to sort an array of 100 elements. Faster sorting algo-
rithms exist. Two of them, quickSort and mergeSort, are developed in Chap.
15.

We want a procedure that satisfies this specification:

/** Sort b: put its elements in non-descending order */

public static void selectionSort(int[] b)

The body of the procedure is a loop. For its loop invariant we choose:

Activity
8-6.1

8.5 Basic array algorithms 293

/** Sort b —put its elements in ascending order */

public static void selectionSort(int[] b) {

// inv P: 0 ≤ i < b.length and b[0..j-1] is sorted and b[0..j-1] ≤ b[j..]

for (int j= 0; j != b.length; j= j + 1) {

int p= the index of the minimum value of b[j..];
// {b[p] is min of b[j..]}
Swap b[j] and b[p]

}

}

Figure 8.8: Abstract view of SelectionSort

Thus, the elements of the first segment are already in ascending order. Moreover,
they are no larger than those in the second segment. Remember this invariant,
and you can then develop the loop from it whenever necessary, as follows.

The invariant is initially truthified by setting j to 0, since that makes the first
segment b[0..j-1] empty and makes the second segment b[j..] be the whole
array. Execution of the loop can terminate when j= b.length, since then the
second segment is empty and the first segment is the whole array and is sorted.
Therefore, the loop can continue as long as j != b.length.

Progress is made toward termination by incrementing j. However, this will
maintain the invariant only if b[j] is the minimum value of b[j..]. So, the
repetend consists of statements to make b[j] have this property —see Fig. 8.8.

Note that the procedure is not yet completely in Java, since the assignment
to p has its expression written in English and the swap statement has to be imple-
mented. Nevertheless, if you are explaining selection sort to someone, always
present it in this fashion. We are using abstraction to hide some of the Java code
and bring out the essence of selection sort.

The assignment to p can be rewritten using function min of Sec. 8.4.3. Or,
the function call can be expanded inline, so that the function body would be as
shown in Fig. 8.9. The function body has nested loops. But do not think of them
as nested loops. When studying the outer loop, view its repetend as:

Set p to the index of the min value of b[j..]
Swap b[j] and b[p]

0 j b.length

P: b sorted, ≤ b[j..]

294 Chapter 8 Arrays

/** Sort b —put its elements in ascending order */

public static void selectionSort(int[] b) {

// inv P: 0 ≤ j ≤ b.length and b[0..j-1] is sorted and b[0..j-1] ≤ b[j..]

for (int j= 0; j != b.length; j= j + 1) {

// Set p to the index of the minimum value of b[j..]
int p= j; // will contain index of minimum
// inv: j < h ≤ b.length and b[p] is the minimum of b[j..h–1]
for (int h= j + 1; h != b.length; h= h + 1) {

if (b[h] < b[p])

{ p= h; }

}

// Swap b[j] and b[p]
int t= b[j]; b[j]= b[p]; b[p]= t; }

}

Figure 8.9: Function selectionSort

When seeing how the assignment to p is implemented, look at the code
underneath the statement “set p to …”; do not look at the rest of the program.
Learning to read a program on different levels of abstraction like this is impor-
tant. Study activities 8-6.1, 8-6.2, and 7-6.2 of ProgramLive for more informa-
tion on not thinking in terms of nested loops.

Analysis of execution time
We analyze the execution time of selectionSort. Finding the minimum of

a segment of size n requires n – 1 array comparisons. Therefore, the first itera-
tion of the loop makes b.length – 1 array comparisons, the next iteration makes
b.length – 2, etc. Here is the well-known formula for the sum of these values:

1 + 2 + ... + (b.length – 1) = (b.length – 1) * b.length / 2

Thus, selection sort requires on the order of (b.length)2 array comparisons.
Hence, it is quadratic in the size of the array to be sorted.

8.6 Parallel vs. class-type arrays

A list of item names together with their prices can be maintained in two arrays:

/** The item names are in items[0..size–1]
For each items[i], its price is in prices[i] */

String[] items= new String[1000];

double[] prices= new double[1000];

int size= 0;

Arrays items and prices are parallel arrays. If one had more data for each
item, say its weight, or price for buying two at a time, one would have more par-
allel arrays.

While parallel arrays can be used in this fashion, and in some cases may be
the quickest way to get a program going, they really are not good style. One
problem with them is that a method that operates on the arrays must have all the
parallel arrays as parameters. Also, a method that deals with one item, say
items[t], must be passed prices[t] and the corresponding elements of other
parallel arrays. Further, once the program is written, it may be difficult to change
it if a new parallel array is needed to contain some new property of items.

Better is to identify the concept involved —in this case, an item and its asso-
ciated properties— and to define a class whose instances are these items:

public class Item {

/** The name and price of the item */

private String item;

private double price;

// Setter and getter methods would go here
}

8.6 Parallel vs. class-type arrays 295

and then to declare an array whose base type is this class:

Item[] items= new Item[1000];

Using a single array of a class type instead of parallel arrays will generally
simplify program structure, shorten the code that processes the data, and make
later modifications (such as adding a new property of items) easier.

8.7 Key concepts

• Arrays. An array a0 is an object that is a list of elements called subscripted
variables.

• Array variables. An array variable b declared as

type [] b

(type is any type, e.g. int or JFrame), initially contains null. An assignment

b= new type [n];

creates an array object with n elements and assigns its name to b.

• Subscripted variables. When b contains (the name of) an array, it has
b.length elements, or subscripted variables, which are named b[0], b[1], …,
b[b.length - 1]. In a subscripted variable b[i], integer i is called the subscript
or index; i must be in the range 0..b.length-1.

• Array initializers. The new-expression new type[] {x0, x1, …, xn-1} creates
an array of size n whose elements initially contain the values of expressions x0,
x1, …, xn-1.When used in an initializing declaration (only), this new-expression
can be abbreviated as {x0, x1, …, xn-1}.

• Array notations. We use non-Java notation like b[h..k] to denote the segment
of array b consisting of elements b[h], b[h + 1], ..., b[k]. Pictures are also used.

• Tables. Sometimes, an array is used to maintain a table of values whose size is
less than the size of the array. In this case, be sure to explain in a comment near
the declaration of the array where in the array the table of values is stored.

• Array schemas. Simple schemas exist for processing all elements of an array
(or a table stored in an array). Their use can reduce programming time.

• Parallel arrays. Instead of arrays p1[0..n] and p2[0..n], use a single array
p[0..n], where p[i] is an object that contains the values p1[i] and p2[i].

• Basic algorithms. There are several basic array algorithms that every pro-
grammer should be able to develop. Learn such an algorithm not by memorizing
code but by memorizing its spec and then practicing developing it from its spec.
Among these algorithms are: linear search, finding a minimum, binary search,
and selection sort.

296 Chapter 8 Arrays

8.8 Self review exercises

SR1. State whether each of the following is true or false. If false, explain why.
(a) One element of an array can be an int and another can be a double.
(b) An array-element subscript should normally be of type int.
(c) An array can be created with zero elements.
(d) The index of an array element and its subscript are the same thing.
(e) After declaring b using int[] b;, one can store a value in b[0].

SR2. Fill in the blanks:
(a) Elements of an array have the same _________.
(b) To refer to the sixth element of array b, use the notation ___________.
(c) In an array element reference like b[k], b[k] is called a __________,

and k is called the _______.
(d) The number of elements in an array d is ____________________.

SR3. Do the following tasks regarding an array sizes.
(a) Declare a final variable sizeOfSizes that is initialized to 15.
(b) Declare variable sizes so that it can contain an array with base type int.
(c) Create an int array with n elements and store the array name in sizes.
(d) Write Java code to set all the elements of array sizes to 0.
(e) Change the fifth element of array sizes to 4.
(f) Write Java code that sets the sixth element of sizes to 6, but only if the

fifth element is even.

Exercises for Chapter 8

Many of these exercises ask for a method to be written. When writing the
method, be sure you write a suitable specification for it before writing the
method body! And test your answers on the computer.

For more exercises, turn to lesson 8 of the ProgramLive CD and click on
button Work.

E1. Create an array to contain the number of hours worked by someone each day
in a five-day workweek. Use the following data: Monday, 6 hours; Tuesday, 5;
Wednesday, 7; Thursday, 8; Friday, 7. Write statements to compute the total
hours worked, the average number of hours per day, and the total earnings,
assuming $7.50 per hour.

E2. A bowling alley has 100 balls with the following weight distribution:

06 pounds: 10 balls 12 pounds: 20 balls
08 pounds: 10 balls 14 pounds: 20 balls
09 pounds: 15 balls 16 pounds: 10 balls
10 pounds: 15 balls

Create an array of 100 elements to contain the weights of the balls. Do not write

Exercises for Chapter 8 297

100 assignment statements; instead, use loops. Write a program segment to com-
pute the mean, median, and total weight of the balls.

E3. A different method of storing the bowling balls of the previous exercise is to
use an array of seven elements, one for each weight, and to store the number of
balls with each weight. Redo the previous exercise using this method. Discuss
the advantages and disadvantages of the two methods.

E4. Write (and test) statements to do the following.
(a) Set the elements of int array segment b[h..k] to 0.
(b) Print the values of b[0..3] on the Java console on one line, separated

by blanks.
(c) Print the values of array b on the Java console, three on a line, with

blanks separating the three.
(d) Print the values of array b in reverse order on the Java console, three on

a line, with blanks separating the three.
(e) Add 1 to each element of int array b.
(f) Store in x the sum of the values of array segment b[h..k].
(g) Store in x the sum of every other value of b[h..k], beginning with the

first.
(h) Store in x the sum of every other value of b[h..k], beginning with the

second.
(i) Find the largest value of int array segment b[h..k-1].
(j) Find the largest value of int array segment b[h..k-1], considering

only every other value beginning with the first.
(k) Store the largest and smallest values of array b[h..k-1], where h < k,

in variables small and large. Use a single loop.

E5. A polynomial is an expression of the form a0 + a1x1 + a2x2 + ... + anxn.
Write a function that computes the value of the polynomial given, as arguments,
the integer n, the value x, and an array a that contains the coefficients a0, ..., an.
Make sure you specify the function properly.

E6. Write a function that tells how many odd numbers an int array contains.

E7. Write a function that tells how many elements of an int array have the value
x (the array and x are parameters of the method.)

E8. Write a function that computes the average of the values of a double array
segment b[h..k].

E9. Write a procedure that does the following. Each element of array segment
b[0..n–1] contains a different integer in the range 0..n-1. The array segment
contains a permutation of the values 0..n-1. Print the elements of b[0..n–1] in
the following order: Print b[0]; then, assuming that b[0]=j, print b[j]; then,
assuming b[j]=k, print b[k]; etc. In other words, print b[0], b[b[0]],
b[b[b[0]]], etc.

298 Chapter 8 Arrays

E10. Write a procedure that changes array segment b[h..k-1] to the following:
each element i, h ≤ i < k, should contain the sum of the original values of
b[h..i]. Thus, if b = {3, 5, 2, 7, 8} initially, upon termination b = {3, 8,
10, 17, 25}. You should do this with one loop.

E11. Rewrite selection sort of Sec. 8.5.4 to use this loop invariant:

0 ≤ j ≤ b.length and b[j..] is sorted and b[0..j-1] ≤ b[j..]

E12. Another quadratic sorting algorithm is called bubblesort. It works as fol-
lows. First, array b is scanned beginning at b[0], swapping each adjacent pairs of
elements to put the larger of the two second. This “bubbles” the largest value to
the top —to b[b.length-1]. Next, start at b[0] and bubble the next largest to
b[b.length-2]. Next, start at b[0] and bubble the next largest to b[b.length-
2]. Continue this process. Implement bubblesort.

E13. Modify bubblesort of the previous exercise to stop as soon as one of the
bubbling-up processes does not swap any array elements.

E14. Modify bubblesort of exercise E12 to alternate bubbling a larger value
upward and bubbling a smaller value downward, stopping when one upward or
downward pass does not swap any elements.

Exercises for Chapter 8 299

Chapter 9

Multi-dimensional Arrays

OBJECTIVES

INTRODUCTION

Two-dimensional tables and the mathematical matrix can be implemented using
rectangular arrays. However, although we may abstractly think in terms of a rec-
tangular array, Java implements it in a way that allows rows of a rectangular array
to have different lengths, giving us the so-called ragged array. In this chapter, we
use what you have already learned about arrays in the previous chapter to show
how to create and manipulate ragged arrays.

9.1 Rectangular arrays

Consider the following declaration and assignment statement:

int[][] b;

b= new int[2][3];

These differ from the declaration and assignment for a one-dimensional array in
that there are two pairs of brackets, not one. This means that b contains the name
of a two-dimensional array, or table, and not a one-dimensional array:

a0

b a0
2 5 4
1 4 8

• Learn how to create and use a rectangular array.

• Learn about ragged arrays of any dimension.

Above, we show array b as an object, assuming that some values have been
assigned to its elements: Row 0 consists of the values {2, 5, 4}; row 1, the val-
ues {1, 4, 8}.

The number 2 within the first pair of brackets of the new-expression on the
second line means that the array has two rows, numbered 0 and 1. The number 3
within the second pair of brackets means that the array has three columns, num-
bered 0, 1, and 2. Since the base type is int, each element is initialized to 0.

The type, or class, of b is int[][], so b contains either null or the name of
an object of this type. A value of type int[][] is an object that is a two-dimen-
sional array of int elements.

In general, any type (or class) may be used in place of int, and this type is
the type of the array elements. It is the base type. Further, any int expression that
yields a nonnegative number can be used between a pair of brackets; the expres-
sion within the first bracket pair gives the number of rows; the expression with-
in the second bracket pair gives the number of columns.

Referencing an array element
The notation b[1][2] references the element in row 1 column 2 of two-

dimensional array b. This is actually a variable, called a subscripted variable, so
it could be used in the left of an assignment to change the element. For example,
with b as shown above, the assignment statement:

b[1][2]= b[0][0] + 1;

changes array b to this:

In mathematics, the notation br,c would be used to reference the element,
and many programming languages use the notation b[r, c]. Java has a reason
for using the notation b[r][c], which will become clear in Sec. 9.3.

In an array-element reference like b[r][c], r and c must satisfy:

0 ≤ r < (number of rows in b)
0 ≤ c < (number of columns in row r of b)

Referencing the number of rows and columns of b
The number of rows of rectangular array b is given by the expression

b.length. The number of columns in row i of b is given by b[i].length.
Actually, since the array is rectangular, so that all rows have the same number of
columns, the number of columns in any row is given by the expression
b[0].length. However, in Java, we prefer to reference the number of columns
in row i using b[i].length.

a0

b a0
2 5 4
1 4 3

302 Chapter 9 Multi-dimensional arrays

A non-Java notation for subarrays
Throughout this text, we have used the notation h..k to denote the range of

integers h, h + 1, h + 2, …, k. We can use this notation to describe a rectangular
subarray of an array b. Here are some examples:

b[0][h..k] Elements of row 0 with column numbers in h..k
b[0][h..] Elements of row 0 with column numbers at least h
b[i..j][h] Elements of column h with row numbers in i..j
b[i..j][h..k] Elements of rows i..j with column numbers

in h..k

We use this non-Java notation to provide understanding of the function in
Fig. 9.1, which sums the elements of a two-dimensional array. When reading the
outer loop, understand its repetend in terms of the statement-comment:

Add the elements of row r to x

which explains what the repetend does, not how it does it. Then, when reading
the implementation of this statement-comment, put the outer loop out of your
mind. It is possible to write the function without local variable p, using just local
variable x. We introduced p to make the function body easier to understand.

Two-dimensional array initializers
Array initializer {2, 4, 6} can be used in creating a one-dimensional array.

This notation extends to two dimensions. For example, the statement below cre-
ates and stores in c the name of a 4x3 array object —an array object that has 4
rows and 3 columns. the first row contains {2, 4, 6}, the second, {1, 1, 1}, and
so on:

int[][] c= {{2, 4, 6}, {1, 1, 1}, {4, 5, 6}, {0, 0, 1}};

9.1 Rectangular arrays 303

/** = the sum of the elements of array b */
public static int sum(int[][] b) {

int x= 0;

// invariant: x is the sum of rows 0..r-1
for (int r= 0; r != b.length; r= r + 1) {

// Add the elements of row r to x
int p= 0;

// invariant: p is the sum of elements b[r][0..c-1]
for (int c= 0; c != b[r].length; c= c + 1)

{ p= p + b[r, c]; }

x= x + p;

}

}

Figure 9.1: A function to sum the elements of a two-dimensional array

9.2 Programs that use rectangular arrays

9.2.1 Printing a two-dimensional array

We develop a procedure to print the elements of a two-dimensional array, one
row per line. Here is its specification:

/** Print array d, one row per line. Precede each row by the integer
* 1 + (the row number) */

public static void printTable(int[][] d)

It makes sense to use a loop schema that processes the rows of array d, one
row at a time. So, here is a first refinement of its procedure body:

// invariant: rows 0, ..., r - 1 have been printed
for (int r= 0; r != d.length; r= r + 1) {

Print row d[r] on one line (with its preceding integer r + 1)
}

We refine the repetend. We need a statement to print the integer r + 1, a loop
to print the elements of the row, and a statement to write a new-line character.
Again, we use a loop schema that processes an array —this time, array d[r]:

// Print row d[r] on one line (with its preceding integer r + 1)
System.out.print((1 + r) + " ");

// invariant: elements d[r][0..c-1] have been printed
for (int c= 0; c != d[r].length; c= c + 1) {

Print d[r][c]
}

System.out.println();

Look at the argument of the statement that prints the integer r + 1. Because
the expression occurs in a place where a String value is expected, the value of
r + 1 is converted to a String. Then, a String literal consisting of two blanks

See lesson 9-23
to get the pro-
cedure to print
the array.

304 Chapter 9 Multi-dimensional arrays

/** Print array d, one row per line. Precede each row by the integer 1 + (row number) */
public static void printTable(int[][] d) {

// invariant: rows 0, …, r - 1 have been printed
for (int r= 0; r != d.length; r= r + 1) {

// Print row d[r] on one line, preceded by r + 1
System.out.print((1 + r) + " ");

// invariant: d[r][0..c-1] has been printed
for (int c= 0; c != d[r].length; c= c + 1)

{ System.out.print(" " + d[r][c]); }

System.out.println();

}

}

Figure 9.2: A procedure to print a two-dimensional array

is catenated to it, so that the row number is separated from the row elements.
Look also at the loop condition. The number of elements in row r is given

by the expression d[r].length. The expression d[0].length could also have
been used, but it is better to use d[r].length because it is correct in more sit-
uations, as we will see in Sec. 9.3.

The refinement of the statement “Print d[r][c]” is a simple print statement
(see Fig. 9.2). A blank is printed before each array element so that the elements
are separated. This ends the development of this procedure.

Discussion
The procedure was developed in stages, using stepwise refinement (see Sec.

2.5). We first developed the outer loop, leaving its repetend as an English state-
ment. Then, we refined the repetend. While doing so, we obliterated the rest of
the program from our minds. Concentrating on one task at a time in this fashion
makes programming easier. Consciously try to separate your concerns.

9.2.2 A two-dimensional array schema

We write a program schema for processing each element of a two-dimensional
array d, where we assume that each element is processed in the same way.

If we think of processing the rows, one at a time, we begin with a for-loop
schema and write this loop:

/** Process each element of d[0..][0..] */
// invariant: d[0..r-1] has been processed
for (int r= 0; r != d.length; r= r + 1)

{ Process row r }

We then refine the repetend. Again we use a loop schema:

// Process row r
// invariant: d[r][0..c-1] has been processed
for (int c= 0; c != d[r].length; c= c + 1)

{ Process d[r][c] }
}

This resulting schema —see Fig. 9.3 is used so often that we usually abbre-
viate it. Instead of the two invariants, we use a single invariant that contains the

Get the schema
from a footnote
on lesson page
9-2.

9.2 Programs that use rectangular arrays 305

// Process the elements of d[0..][0..] in row-major order.
// invariant: d[0..r-1] and d[r][0..c-1] have been processed
for (int r= 0; r != d.length; r= r + 1)

for (int c= 0; c != d[r].length; c= c + 1)

{ Process d[r][c] }

Figure 9.3: A schema for processing the elements of a two-dimensional array in row-major order

information from both. Then, we eliminate the statement-comment for the repe-
tend of the outer loop and write the two loops together. We usually omit the
braces surrounding the outer-loop repetend, since the repetend is a single state-
ment —a for-statement. It is one of the few contexts in this text where you will
find nested loops that are not separated by a statement-comment.

This schema processes the elements in row-major order. Processing the ele-
ments in column-major order means processing those in the first column, then
those in the second column, etc.

9.2.3 An interesting table

Activity 9-2.3 develops a method that constructs a table of interest values. Given
a number of years y and an interest number of interest rates n to calculate, the
method constructs an array interest[0..y-1][0..n-1] where interest[r]
[c] is the balance after r years when interest accumulates at the rate of (5 + .05
* c) percent per year. Watch the development of this method on the CD.

9.2.4 Row-major search

The function of this subsection returns an instance of class Coordinates, which
is given in Fig. 9.4. The function performs a row-major search of the array for a
value x, as stated in this specification:

/** = first index (r, c) in row-major order of x in d
* (or the pair (d.length, 0) if x not in d) */

public static Coordinates search(int[][] d, int x)

Get the method
from a footnote
on lesson page
9-2.

Get the method
from a footnote
on lesson page
9-2.

306 Chapter 9 Multi-dimensional arrays

/** An instance is a pair (r, c) of integers
public class Coordinates {

/** The row number and column number. */

int r; int c;

// Constructor: an instance (r, c)

public Coordinates(int r, int c) {

this.r= r;

this.c= c;

}

// = the string "(r, c)" (where r and c are replaced by the values in their fields)
public String toString() {

return "(" + r + ", " + c + ")";

}

}

Figure 9.4: Class Coordinates

For example, if d is the array {{2,8,1,7}, {5,2,7,8}, {2,3,5,6}}, then
the call search(d, 5) produces the pair (1,0) because the first occurrence of
5 in d occurs in row 1, column 0.

The elements of d are to be processed in row-major order, where “process-
ing an element” means returning from the function if the element equals x. We
can use the loop schema of Fig. 9.3. The function itself is given in Fig. 9.5.

The invariant came from refining the meaning of “process an element” in
this context. The loop repetend was refined as well: If x equals the array element
being processed, a new instance of class Coordinates is created and returned.
And, when the loop terminates normally, then, as per the specification of the
method, the value returned is an instance (d.length, 0) of class Coordinates.
The use of the schema made for a rapid development of this function.

9.2.5 Saddleback search

Suppose m by n array d satisfies this property: every row is non-descending and
every column is non-descending. Under these conditions, we hope that we can
search the array for a value faster than row-major order search does, which takes
time proportional to m * n in the worst case. But how do we search it faster?
Activity 9-2.5 of the CD develops a perfectly delightful algorithm for searching
the array. The idea for the algorithm is not pulled out of a magician’s hat but
comes from following the principle of finding a loop invariant before writing
the loop. The development is much more effective in a lecture, so we leave it to
activity 9-2.5 of the ProgramLive CD.

9.3 Arrays of arrays

Previously, we said that a variable b declared as

int[][] b= {{5, 6, 2}, {1, 4, 8}};

contained the name of a rectangular array. While this view can be used, we gain

Get the schema
from a footnote
on lesson page
9-2.

9.2 Programs that use rectangular arrays 307

/** = first index (r, c) in row-major order of x in d, or (d.length, 0) if x not in d */
public static Coordinates search(int[][] d, int x) {

// invariant: d[0..r-1] and d[r][0..c-1] do not contain x
for (int r= 0; r != d.length; r= r + 1)

for (int c= 0; c != d[r].length; c= c + 1) {

if (d[r][c]) == x)

{ return new Coordinates(r, c); }

}

return new Coordinates(d.length, 0);

}

Figure 9.5: A row-major search function

flexibility in our programming by understanding more clearly the Java concept
of a multi-dimensional array. Actually, b contains the name of an array object of
length 2, each element of which is the name of an array object of length 3:

Thus, b is array object a0, b[0] is row 0, which is array object a1, and b[1] is
row 1, which is array object a2. In this sense, there is no multi-dimensional array.
There is simply an array, b, each element of which is an array.

Variable b, of type int[][], contains the name of a one-dimensional array.
Array elements b[0] and b[1] have type int[].

Now the notation used earlier for referencing the lengths of rows and
columns makes sense:

b.length is the length of array object a0: 2
b[0].length is the length of array object a1: 3
b[1].length is the length of array object a2: 3

9.3.1 Ragged arrays

Consider an array b that is declared and initialized like this:

int[][] c= new int[2][];

Array c is declared to be a two-dimensional array, but only the size of the first
dimension is given (but the brackets [] for the second dimension are there). Only
the elements in the first dimension are created, and they are set to null:

Each element of c has type int[], so arrays can be stored in them. Further,
the arrays in the elements can have different lengths! The assignments:

c[0]= new int[] {1, 3};

c[1]= new int[] {2, 4, 7};

change c to look like this:

a6

c a6 null
null

a0

b a0

a1 a2

a1
a2

5
6
2

1
4
8

308 Chapter 9 Multi-dimensional arrays

Now, row 0 of c has 2 elements and row 1 has 3 elements. We call it a ragged
array: a two-dimensional array whose columns have different sizes.

In many cases, each row should have the same number of columns, and the
old method of creating both at the same time is the method to use. However, if
you want to save space by having each column have a different number of ele-
ments, use the new method, as just illustrated.

9.3.2 Pascal’s triangle

In order to show one use of ragged arrays, we introduce Pascal's triangle, attrib-
uted to Blaise Pascal, a Swiss mathematician and philosopher, who first discov-
ered this little triangle and its properties. Below, we show Pascal’s triangle in the
middle. On the right, we show it as we usually draw a two-dimensional array:

row 0 1 1

row 1 1 1 1 1

row 2 1 2 1 1 2 1

row 3 1 3 3 1 1 3 3 1

row 4 1 4 6 4 1 1 4 6 4 1

row 5 1 5 10 10 5 1 1 5 10 10 5 1

...

Each row r of this triangle contains r + 1 integers. The first and last elements of
each row are 1. Each other element t[r][c] is the sum of the two elements
above it:

t[r][c] = t[r - 1][c - 1] + t[r - 1][c] (for 0 < r, 0 < c < r)

Pascal's triangle and combinatorics
Pascal's triangle is important in the field called combinatorics. The integer

a6

c a6

a7 a8

a7
a8

1
3

2
4
7

9.3 Arrays of arrays 309

Java syntax: Partial-array creation
new type [int-expression][]

Example: new int [n][]

Purpose: Create only the first dimension of a two-dimensional
array, with int-expression elements, all null.

Extension: For an n-dimensional array, any of the first dimen-
sions can be created, e.g. new int[5][3][][][].

t[r][c] is called “r choose c” because it is the number of ways of choosing c
elements from a set of size r.

We give an example. Consider the set of integers {1, 2, 3, 4}. Its subsets
of size 2 are:

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

There are 6 subsets of size 2 in the set of 4, so 4 choose 2 is 6, and 6 appears in
row 4 column 2 of Pascal’s triangle.

Creating Pascal's triangle
Figure 9.6 contains a function that computes the first n rows of Pascal’s tri-

angle as a ragged array. The first statement of the function body declares two-
dimensional array variable t, creates an array object of length n, whose elements
are initialized to null, and stores the name of the array in t. Note that if n is 0,
an array of size 0 is created; this is allowed in Java.

Each iteration of the loop creates one row of array elements and stores val-
ues in them. The repetend has two steps: first, create the array object of length
r + 1 and store it in t[r]; second, calculate the values of array t[r].

Calculating the values for row r is straightforward. The first value is set to
1; the inner values of the row are calculated in a loop, using the formula given
earlier, and the last value is set to 1. For row 0, the single element will be calcu-
lated twice because it is both the first and the last element.

Get the method
from a footnote
on lesson page
9-4.

310 Chapter 9 Multi-dimensional arrays

/** = the first n rows of Pascal’s triangle (for n >= 0) */

public static int[][] PascalTriangle(int n) {

int[][] t= new int[n][]; // Pascal’s triangle

// invariant: rows 0..r-1 have been created
for (int r= 0; r != t.length; r= r + 1) {

// Create array t[r] for row r of Pascal’s triangle
t[r]= new int[r + 1];

// Calculate the values for row r
t[r][0]= 1;

// invariant: elements b[r][0..c-1] have been calculated
for (int c= 1; c < r; c= c + 1)

{ t[r][c]= t[r - 1][c - 1] + t[r - 1][c]; }

t[r][r]= 1;

}

return t;

}

Figure 9.6: A function to calculate n rows of Pascal’s triangle

Printing Pascal’s triangle
Activity 9-4.1 of the CD gives a procedure for printing the first n rows of

Pascal’s triangle. The major difficulty is in formatting it nicely. Each row should
be centered around the vertical axis, which means that row 0, which has only one
value, has to be preceded by a number of blanks that depends on how many char-
acters the last row takes.

Further, there are two ways to print the triangle: (1) each integer value takes
only the number of characters that it needs and (2) all integers are printed using
the number of characters required by the largest integer.

Please see the CD for a full discussion of printing Pascal’s triangle.

9.4 Key concepts

• Array types. type[][] is the type of a two-dimensional array with base type
type, type[][][] is the type of a three-dimensional array, etc. Elements of a two-
dimensional array b are referenced using b[r][c], elements of a three-dimen-
sional array using b[r][c][d], etc.

• Rectangular array. A rectangular array can be created using the new-expres-
sion type[nrow][ncols].

• Row-major and column-major order. Processing an array in row-major order
means processing the elements in row 0, then the elements in row 1, and so on.
Processing in column-major order means processing the elements in column 0,
then the elements in column 1, etc.

• Ragged array. In Java, multi-dimensional arrays are really arrays of arrays (of
arrays, etc.). Expression new type[5][][] creates a one-dimensional array object
with 5 elements, all set to null; each of the 5 elements has type type[][], so it
can hold the name of an object that is a one-dimensional array of elements of
type type[]. If the five elements are arrays of different lengths, the array is called
a ragged array.

Exercises for Chapter 9

E1. A teacher is having trouble remembering the names of her 15 students, so she
arranges the desks into a rectangle with 5 rows and 3 columns. The names of her
students are: John, Jill, Pete, Chris, Mary, Seth, Gary, Teresa, Hanna, Amanda,
Kim, Greg, George, Perry, and Mike. Write Java code to store the names of the
students in a 5x3 two-dimensional array of Strings.

E2. The teacher (see exercise E1) has memorized her students' names and wants
to give them new seats. Write a method to randomly shuffle the array.

E3. At the Water Hill stables, the horse stalls are arranged in a rectangle, 6 stalls
by 5 stalls. Create a boolean array that will indicate which horses have been fed.

Get the method
from a footnote
on lesson page
9-4.

Exercises for Chapter 9 311

E4. The owners at the Water Hill stables (see exercise E3) would like a bit more
information than just whether a horse has been fed. Create class Horse and make
the array an array of class Horse. Be creative in the fields and methods you
include in the class.

E5. Write a function that calculates the transpose of a rectangular array b. The
transpose of b is b with its rows and columns interchanged. In other words, sup-
pose b is an m-by-n array. Then the transpose c of b is an n-by-m array in which
each element c[i, j] has the value b[j, i].

E6. Write a procedure to print the first n rows of Pascal’s triangle in a nice for-
mat, with each row centered. Do it two ways. First, have each element take as
many characters as it needs, but no more. Second, have each element take the
same number of characters: the number needed for the maximum integer to be
printed.

E7. Write a function that, given an n-by-m array b, returns a one-dimensional
array of size n that contains the sums of the individual rows of b.

E8. Write a function that tells whether an array is a magic square. An array is a
magic square if: (1) it is an n-by-n array, for some n, (2) it contains the integers
1, 2, 3, ..., n2, (3) the rows, columns, and two diagonals have the same sum. Here
is a magic square:

{{8, 1, 6}, {3, 5, 7}, {4, 9, 2}}

E9. Type “magic square” into a search engine on the internet and find out about
magic squares. Write a function that, given an odd integer n, computes an n-by-
n magic square.

E10. Think about some area where it might make sense to use a ragged array.
Dream up a problem that would make use of a ragged array and write a Java pro-
gram for it.

312 Chapter 9 Multi-dimensional arrays

Chapter 10

Exception Handling

OBJECTIVES

INTRODUCTION

When an error occurs in your program, an exception is thrown. This may lead to
abortion of program execution. In the first section of this chapter, we study the
error messages that are printed when abortion occurs.

We then discuss error handling in Java. Basically, if something untoward
happens, an object of a throwable class is thrown, and another part of the program
can catch it and handle it. The try-statement gives you the ability to catch thrown
objects and handle them. Or, you can simply let another part of the program —
the part that called the method in which the object was thrown— handle them.

The Java exception-handling mechanism allows you to isolate the problems
of handling errors from the part of the program that does calculation in a normal
fashion. Used properly, the exception-handling mechanism is a useful tool.

10.1 Output of thrown Exceptions

Method main of the class shown below tries to print the value of 5 / 0:

public class Ex {

public static void main(String[] args) {

System.out.println(5 / 0);

}

}

Activity
10-1.1

• Learn about Java’s Exceptional error messages.

• Learn about throwable objects and how they are thrown and caught.
• See how you can create your own throwable objects.

314 Chapter 10 Exception handling

Division by 0 is not defined, so the attempt to divide by 0 is an error. Java han-
dles this error by throwing an exception, which causes the program to terminate
abnormally with the following messages in the Java console:

Exception in thread "main" java.lang.ArithmeticException: / by zero
at Ex.main(Ex.java:3)

(The first part of the first line, which says that an exception occurred in thread
main, may be missing.) The important information on the first line is that an
ArithmeticException occurred, a division by zero. The second line says where
the exception occurred: in method main of class Ex, on line three of file Ex.java.

The information following the second line (if present) is not important for
understanding the reason for program termination, and you can disregard it.

The call-stack trace
When the program aborts because of an exception, you have to study it to

find out why and correct the error. The messages in the Java console tell you the
kind of Exception that occurred and the method being executed at the time, and
this can be helpful. But the Java console contains more. To illustrate, we change
the program so that the division by 0 occurs within a different method:

public class Ex {

public static void main(String[] args)

{ first(); }

public static void first()

{ second(); }

public static void second()

{ System.out.println(5 / 0); }

}

Suppose method main is called. Method main calls method first, which
calls method second, which attempts to divide by 0.

This list of calls that have been started but have not completed is called the
call stack. When the attempt to divide by zero occurs, the same exception is
thrown, and the following appears in the Java console:

java.lang.ArithmeticException: / by zero

at Ex.second(Ex.java:7)

at Ex.first(Ex.java:5)

at Ex.main(Ex.java:3)

As before, the first line says that an ArithmeticException occurred, a division
by zero. The second line says that the Exception occurred in method second, at
line seven of file Ex.java. The third line says that method second was called
from method first, and the fourth line says that first was called from main.

Thus, when an Exception occurs:

A Java-console message describes the call stack: the stack of
methods that have been called but that have not yet completed.

You can use this stack of calls to help figure out how your program got to the
point of throwing an Exception.

Output of an Error
A runtime error can lead to throwing either an Exception or an Error.

Throwing an Exception may or may not cause immediate termination; as you
will see later, it depends on whether your program “handles” it. Throwing an
Error always causes immediate termination of a program. Errors are too severe
to consider continuing execution. Here are examples of Errors that you may see:

OutOfMemoryError

InternalError

UnknownError

10.1 Output of thrown Exceptions 315

/** = the value r that satisfies x = q * y + r and 0 <= r < y for some q.
Throw an IllegalArgumentException if y = 0.*/

public static int mod(int x, int y) {

if (y == 0)

{ throw new IllegalArgumentException("x mod 0 is illegal"); }

/* { Because q*y = (-q)*(-y), we have: mod(x,y) = mod(x,-y). } */

y= Math.abs(y);

int r= x % y;

/* For x >= 0, mod(x, y) = x % y */

if (x >= 0)

{ return r; }

/* For x < 0, x % y is the value r' that satisfies
x = q * y + r' and -y < r' <- 0

= <manipulate>
x = (q - 1) * y + (r' + y) and -0 < r' + y <= y

Hence, x mod y is x % y + y */

return r + y;

}

Figure 10.1: A throw-statement in function mod

About the null pointer. Suppose you declare a variable of some class-type, say

JFrame jframe;

but forget to store anything in it. Variable jframe contains null rather than the
name of a folder. If you then try to access a method, say with jframe.get-
Width(), Java will give this message: java.lang.NullPointerException.
By “null pointer”, they mean “null folder name”.

In the first case, you have to find out why your program used too much
memory. In the other two cases, which should rarely occur, it is difficult to say
what to do. Something caused things to become really messed up. Perhaps
recompiling all files may help.

Message printed for thrown Errors and Exceptions are similar.

10.2 The throw-statement

Many exceptions and errors are thrown by the Java system itself. But you can
write your own statements to “throw an exception”. For example, consider this
little program:

public class Ex {

public static void main(String[] args) {

throw new ArithmeticException("/ by zero");

}

}

Activity
10-4.1

316 Chapter 10 Exception handling

Java syntax: throw-statement
throw throwable-object ;

Example: throw new NumberFormatException();

Purpose: Terminate normal execution and “throw” the throwable-
object, which must be an instance of class Throwable. Unless the
thrown object is caught, execution terminates with a message.

public class Throwable implements ... {

private transient Object backtrace;

private String detailMessage;

/** Constructor: an instance with no detail message */
public Throwable() { ... }

/** Constructor: an instance with detail message m */

public Throwable(String m) { ... }

/** = the detail message (null if none) */
public String getMessage() { ... }

/** = localized message. If not overridden, same as getMessage() */
public String getLocalizedMessage() { ... }

/** = short description of this instance */

public String toString() { ... }

}

Figure 10.2: Class Throwable (not all methods are shown)

When method main is called and the throw-statement in it is executed, an
instance of class ArithmeticException is created and the program terminates
with the message "/ by zero". In fact, the output will be the same as if a divi-
sion by zero had actually occurred.

Not all objects can be thrown. For example, you cannot throw a JFrame:

throw new JFrame(); // This statement is syntactically illegal

Only objects that are of class Throwable (or its subclasses) can be thrown.
Figure 10.1 contains an example of a throw-statement. Function mod throws

an IllegalArgumentException if y is 0, as required by its specification.
Function mod could have been written without this test, in which case an
ArithmeticException would be thrown (if y is 0) when the expression x % y is
calculated. But by explicitly throwing the exception, we can give a better mes-
sage.

10.3 The throwable object

An object can be thrown only if it is an instance of class Throwable, which is in
package java.lang. Figure 10.2 contains the definition of class Throwable. We
explain its components.

Field backtrace automatically contains the call stack at the point where the
abnormal event occurred. Field detailMessage can contain a description of the
error. For example, for the abnormal event division by 0, this field contains " /
by zero". Every Throwable object has these two pieces of information.

There are two constructors; one allows the caller to give the detail message.
Getter method getMessage returns the detail message, and method get-

LocalizedMessage can be overridden to return a message that is particular to a
subclass. The usual method toString is there as well.

We do not show methods that deal with saving and printing the call stack.

Lesson
page 10-2

Get method mod
from page 10-2
of ProgramLive.

10.3 The throwable object 317

Throwable The root of all throwable classes
Error The root of serious errors that cause termination

VirtualMachineError

OutOfMemoryError

StackOverflowError

Exception The root of exceptions that may be caught and processed
RuntimeException The root of exceptions that need not be checked

ArithmeticException

IllegalArgumentException

NumberFormatException

IOException

ClassNotFoundException

Figure 10.3: The hierarchy of throwable classes (a partial list)

Classification of throwable classes
There are hundreds of different kinds of errors or exceptions that could hap-

pen at runtime, ranging from division by 0 to an input-output error to memory
overflow. With so many different possibilities of exceptions, some structure must
be put on them to keep them manageable. Java does this by providing a subclass
structure for them. Figure 10.3 shows a few of the subclasses, with indenting to
denote subclassing. Thus, class Throwable has two direct subclasses: Error and
Exception. If an instance of class Error is thrown, something serious happened
and the program terminates. If an instance of class Exception is thrown, then
either the program catches it and processes it in some way or the program ter-
minates with an error message.

Classes Exception, RuntimeException, and ArithmeticException
To the left in Fig. 10.4 is an object of class Exception. As you can see, the

only components defined in class Exception are two constructors: one with no
parameters and one with one parameter, which, through a super-constructor call,
will be assigned to inherited field detailMessage.

On the right side of Fig. 10.4 is an object of class RuntimeException, which
extends class Exception. It also contains only two components, both construc-
tors. This illustrates the general pattern. There is no need to define anything in a
throwable class besides two constructors. The different subclasses are defined
only to give structure and classification to the large list of exceptions that can
occur during execution of a program.

So that you can see what a throwable class looks like, Fig. 10.5 contains the
definition of class ArithmeticException. It has two simple constructors; that is
all. If you want to write your own throwable class, use this one as a model.

See lesson page
10-2 to obtain a
template for a
subclass of class
RuntimeExcep-
tion

318 Chapter 10 Exception handling

Figure 10.4: Objects of class Exception and RuntimeException

a1

Throwable() Throwable(String)

getMessage() toString()

getLocalizedMessage()

fillInStackTrace()

Throwable?backtrace

?

ExceptionException()

Exception(String)

a2

Throwable() Throwable(String)

getMessage() toString()

getLocalizedMessage()

fillInStackTrace()

Throwable?backtrace

?detailMessage

ExceptionException()

Exception(String)

RuntimeException

RuntimeException()

RuntimeException(String)

10.4 Catching a thrown Exception

10.4.1 The try-statement

The program segment below contains a try-statement:

Calculate x;
try {

y= 5 / x;

} catch (ArithmeticException ae) {

System.out.println("x was 0; using 0 for 5 / x");

y= 0;

}

third statement

The second is a try-statement, of the form:

try {

try-block
} catch (parameter-declaration) {

catch-block
}

The parameter-declaration must declare an object of some throwable class. In the
try-block above, parameter ae is ArithmeticException, a throwable class.

Execution of the try-statement begins with execution of the try-block. We
have three cases to consider, depending on whether an object is thrown and, if
one is thrown, whether this try-statement catches it.

1. If no object is thrown, execution of the try-statement terminates when
execution of the try-block does. This is the usual case.

2. If some object ob is thrown, the try-block is abnormally terminated. What
happens next depends on the catch clause that follows the try-block.

2a. If the class of the catch-clause parameter matches the class of instance

Activity
10-3.1

10.4 Catching a thrown Exception 319

/** Thrown when an exceptional arithmetic condition has occurred. For example, an integer
"divide by zero" throws an instance of this class. */

public class ArithmeticException extends RuntimeException {

/** Constructor: an instance with no detail message */

public ArithmeticException()

{ super(); }

/** Constructor: an instance with detail message s */
public ArithmeticException(String s)

{ super(s); }

}

Figure 10.5: Class ArithmeticException

ob, the catch-block catches the thrown ob: ob is assigned to the parame-
ter and the catch-block is executed, after which execution of the try-state-
ment terminates.

2b. If the class of the catch-clause parameter does not match the class of
object ob, Exception ob is thrown to another place. In other words, ob is
handled just as it would have been had there not been a try-statement.
Something is guaranteed to catch the thrown object ob and handle it. Just
how this works is discussed later.

In the example given above, evaluation of 5 / x throws an ArithmeticEx-
ception, since x is 0. This is caught by the catch-block. So the program prints
"x was 0; using 0 for 5 / x", sets y to 0, and then executes the third statement.

We emphasize that if the try-block does not throw an exception, execution
proceeds normally to the statement following the try-statement. But if the try-
block throws an exception, execution of the try-block is finished. Then, either the
catch-block catches the exception and processes it, after which execution pro-
ceeds to the statement following the try-statement, or the catch-block does not
catch the exception and the thrown object is thrown further —which we explain
later.

320 Chapter 10 Exception handling

/** = the integer in b[f]
--= -1 if f is outside the range of b; = 0 if b[f] is not an integer */

public int getIntField(String[] b, int f) {

try {

return Integer.parseInt(b[f]);

} catch (ArrayIndexOutOfBoundsException e) {

return -1;

} catch (NumberFormatException e) {

return 0;

}

}

Figure 10.6: Realistic example of a try-statement

Java syntax: Try-statement
try try-block
catch (parameter-declaration) catch-block
finally finally-block

Restrictions: The try-block, catch-block, and finally-block are blocks of the form { … }.
There may be zero or more catch-phrases of the form catch (parameter-declaration)
{...}. The finally-phrase is optional, unless there is no catch-phrase.

Execution: Discussed in this section. See the CD, lesson page 10.3, for an explanation of
the finally-phrase.

Example of a realistic try-statement
In Fig. 10.6, we present a function that catches two types of errors: a sub-

script out of range and an attempt to convert a String that does not contain an
integer into an int. Class JLiveWindow, which provides a GUI with some int
fields into which a user is expected to type integers, provides the motivation for
this example. Take a look at the code in that class to see a real use of exception
handling.

The body of the try-statement in Fig. 10.6 converts the value of b[f] —a
String— to an int and returns it. This return statement is enclosed in a try-
block because its execution may cause two kinds of Exception: a subscript out
of range and a NumberFormatException, which may be thrown by method
parseInt. Both of these exceptions are caught by catch clauses. This example
shows that a try-statement may have any number of catch clauses, not just one.

We could have used an if-statement to test whether f was in the subscript
range of array b. Here, catching it using a try-statement leads to a simpler, more
consistent method body since the try-statement has to be used anyway to catch
the second kind of object that could be thrown.

10.4.3 Propagation of a thrown exception

We explain the throwing of an object. The program of Fig. 10.7 contains three
methods. Suppose it is executed, by calling method main. Method main calls
method first, which then calls method second.

Now suppose that an object ob is thrown within method second, signaling
some sort of error, and that the throw does not occur within a try-block. Since
there is no catch clause to catch the object, it is thrown further, to the calling
method. Thus, in this example, it appears that the call on method second throws
ob. And if this call on method second does not appear within a try-block, object
ob is thrown out further, to calling method main. So it looks like method call

Activity 10-3.4
makes this ma-
terial more
accessible.

Activities 10-
3.2 and 10.3.3
describe try-
statements in
JLiveWindow
and JLiveRead.
Get the pro-
grams from
page 10-3.

10.4 Catching a thrown Exception 321

public class C {

public static void main(String[] args) {

try {

first();

} catch (...)

{ ... }

}

public static void first()

{ second(); }

public static void second()

{ ... }

}

Figure 10.7: Propagating a thrown exception

first() throws ob.
The call to method first is within a try-block, so if one of its catch claus-

es catches ob, that ends the throwing. But, if the catch clauses do not catch ob.
Then ob is thrown outside the try-statement, so that it looks like the try-statement
throws the object. In our example, the try-statement is not in a try-block, so ob
is thrown to the caller of method main, which is within the Java system.

The call of method main within the system is within the try-block of a try-
statement that catches all Throwable objects, and its catch-block is guaranteed
to print the information about ob.

The general rules for throwing an object
We have shown with an example how an object is thrown. We now give a

more formal description of throwing an object ob. The following cases can arise:

1. Object ob was thrown in a try-block and is caught by a catch clause. That
catch clause processes ob.

2. Object ob was thrown in a try-block and is not caught by a catch clause.
Then ob is thrown out to the try-statement —it is as if the try-statement
itself threw ob.

3. Object ob was thrown by a statement that is not within a try-block. This
statement occurs within a method body that is being executed for some
method call. Then ob is thrown out to that call —it is as if the method call
threw ob.

This process is repeated over and over until ob is caught. If the program does
not catch ob, it will be caught by the Java system: the call that started execution
of the program is within a try-statement that catches all thrown objects.

Throwing an object while another is being handled or propagated
Nothing prevents a catch-block from throwing another object a1 (say) —by

mistake or otherwise— while a previously thrown object a0 is being handled. If
this happens, the previously thrown object a0 is ignored and the newly thrown
object a1 is propagated, as described earlier.

To test this yourself, place the method of Fig. 10.8 into a Java program, exe-
cute it, and compare the output messages with the method.

322 Chapter 10 Exception handling

Java syntax: throws-clause
throws class-name , …, class-name

Example: throws ArithmeticException

Purpose: Placed in the header of a method, the throws-clause indicates that the
method may throw objects of the given class-names and relieves the method of
the responsibility of catching them —that responsibility is passed to methods that
call this method. The throws-clause is needed for “checked Exceptions”.

Catching and throwing an Exception further
Figure 10.1 contains method mod. Its first statement throws an exception if

y = 0. We wrote the function this way so that we could give our own detail mes-
sage. But there is another way to get the same result, as shown in Fig. 10.9.

We remove the if-statement and place the whole body in a try-statement that
catches ArithmeticExceptions. Then, in the catch-block, we throw a new
exception with the desired message. The new method body does not rethrow
object ae; instead, it creates a new object and throws it. This is done because it
is not possible to change the detail message of a throwable object.

But there are cases where rethrowing ae makes sense. For example, one
might catch the exception only to dispose of some resources —which is beyond
the scope of this text— and then rethrow the same exception.

This second way of detecting that y is 0 is more in keeping with the excep-
tion-mechanism philosophy. Rather than intersperse lots of tests for errors, which
might double the size of the code, let the exception-handling facilities do that
work. Of course, in this case, this second way yields a longer program, but in
general, using the exception-handling facilities can help.

10.5 Checked Exceptions

A Java compiler checks to make sure that certain thrown objects are caught by
your program; if they are not caught, the compiler issues an error message and
refuses to compile the program. For example, consider this silly program:

public class C {

public static void main(String[] args)

{ first(); }

public static void first()

{ throw new Exception(); }

}

Method first may throw an Exception but does not catch it, and this makes the

Lesson
page 10-5

Get function
mod2 of Fig.
10.8 from a
footnote on les-
son page 10-2.

Activity
10-4.2

10.5 Checked Exceptions 323

public static void main(String[] args) {

try {

System.out.println("try-block 0 ");

throw new ArithmeticException("fake exception 1 ");

} catch (ArithmeticException ae) {

System.out.println("catch-block 0 ");

System.out.println(ae);

throw new ArithmeticException("fake exception 2 ");

}

}

Figure 10.8: A catch-block itself can throw an exception

program syntactically illegal. The compiler will issue the following error mes-
sage and refuse to compile the program:

Error: Exception java.lang. Exception must be caught or it must
be declared in the throws-clause of this method C.first().

To get around this problem, place a throws-clause “throws Exception” in
the method header:

public static void first() throws Exception {

throw new Exception();

}

The occurrence of the throws-clause relieves the method of the responsibil-
ity of catching objects of the mentioned classes and places that burden on any
method that calls it. In the program given above, method main is now responsi-
ble for thrown Exceptions. It can relieve itself of this responsibility by having
its own throws-clause.

324 Chapter 10 Exception handling

/** = the value r that satisfies x = q * y + r and 0 <= r < y for some q.
Throw an IllegalArgumentException if y = 0. */

public static int mod2(int x, int y) {

try {

/* { Because q * y = (-q) * (-y), we have: mod(x, y) = mod(x, -y). } */

y= Math.abs(y);

int r= x % y;

/* For x >= 0, mod(x, y) = x % y */

if (x >= 0)

{ return r; }

/* For x < 0: x % y is the value r' that satisfies
x = q * y + r' and -y < r' <= 0

= <manipulate>

x = (q - 1) * y + (r' + y) and -0 < r' + y <= y

Hence, x mod y is x % y + y */
return r + y;

} catch (ArithmeticException ae) {

throw new IllegalArgumentException("x mod 0 is illegal");

}

}

Figure 10.9: A second version, mod2, of function mod

public class C {

public static void main(String[] args)

throws Exception

{ first(); }

public static void first() throws Exception

{ throw new Exception(); }

}

The Java runtime system now has the responsibility of catching Exceptions,
since it calls main, and it will catch them.

Checked and unchecked objects
Checking that thrown objects are caught is a good idea, for it forces the pro-

grammer to think carefully about how thrown objects should be handled. But the
Java compiler does not check all thrown objects in this manner. All exceptions
are called checked exceptions except these unchecked exceptions:

• Thrown objects of class Error and its subclasses.
• Thrown objects of class RuntimeException and its subclasses.

If Java forced us to put a throws-clause in the header for all possibly-thrown
objects, each method would have a long throws-clause on it, and everything
would become unwieldy. Therefore, the usual types of exceptions that might
occur —like subscript out of range, and division by 0— are made subclasses of
RuntimeException, so they are not checked. Those that are important to check,
like input-output exceptions (instance of class IOException) are not subclasses
of RuntimeException and therefore must be checked.

A mode of operation for handling checked exceptions
It is difficult to remember which exceptions are checked and which are not,

and it is often a pain to have to go look it up. Therefore, we usually work as fol-
lows. We program without regard to which exceptions are checked or not. Then,
when we compile and find the program is syntactically illegal because a certain
exception is not caught, we investigate and figure out what to do for that partic-
ular case. Usually, this will mean simply putting a throws-clause on one or more
methods.

10.6 Hints on using exceptions

We make a few remarks on using exceptions.

1. Do not overuse exceptions.

Do not use exception handling to replace simple tests. Exception handling
takes more time than an equivalent simple test, but that is not the real reason for
not using exception handling. The ability to throw an exception in a method is

Lesson
page 10-6

10.6 Hints on using exceptions 325

there to take care of really abnormal errors that the method itself cannot be
expected to handle and that should therefore be handled by the calling method
(or its caller ...).

2. Throw an exception when the method in which an abnormal event occurs
is not the best place to handle it.

For example, if you are writing a method that processes a sequence of char-
acters of a particular form and a sequence is given that does not have the form,
the error is the caller’s, and the calling place is the best place to handle it.

3. Do not make try-blocks too small.

All other things being equal, it is better to have the whole body of a method
enclosed in a single try-statement with several catch clauses than to have many
smaller try-statements each with one catch clause.

4. Do not hide exceptions.

When an error message says that a checked exception needs a try-block, the
tendency is to write one hurriedly, like this one:

try {

some code

} catch (Exception ex) {}

The catch-block does nothing, and the program just goes on as if nothing
happened. You do this because you do not expect the exception to happen. But
when it does, and it takes you several days to find the problem, you will be sorry.

10.7 Key concepts

• Throwable object. A throwable object is an object that is an instance of class
Throwable. Typically, it is an object of one of two subclasses of Throwable:
Error (these should not be caught and handled) and Exception (these may be
caught and handled).

• Throwing an exception. Java throws an exception —an object of (a subclass
of) class Throwable— if an abnormal event happens. If it is not caught, a mes-
sage is printed and program execution aborts.

• The throw statement. A program can throw an exception using the statement
throw throwable-object;.

• Catching an exception. A program can catch an exception using the try-state-
ment:

try try-block catch (parameter-declaration) catch-block

• Checked exceptions. Every possibly-thrown exception that is not an instance

326 Chapter 10 Exception handling

of Error or RuntimeException is called a checked exception. A method m (say)
that possibly throws a checked exception is syntactically illegal unless m either
catches it or mentions it in a throws-clause in the method header —in which case
any method that calls m is viewed also as throwing the checked exception.

10.8 Self-review exercises

SR1. If execution of a try-block does not throw an exception, what happens
when execution of the try-block finishes?

SR2. What happens if several catch-clauses can catch an object that is thrown in
a try-block?

SR3. If a thrown exception is not handled by a method, what happens to it?

SR4. What message do you get if you reference obj.x and obj contains null?
What does it mean?

SR5. What kinds of exceptions have to be declared with a throws-clause? What
are such exceptions called?

SR6. Does throwing an Exception have to cause abortion of the program? What
about throwing an Error?

SR7. When is it mandatory to have at least one catch-clause in a try-statement?

SR8. Write a catch-clause that will catch all thrown exceptions (but not Errors).

SR9. Can a throwable object be thrown in a catch-block?

SR10. Can a catch-block throw the object that it caught? If so, why would one
want to do this?

Exercises for Chapter 10

E1. Write a procedure to print the real roots of the quadratic formula ax2 + bx +
c. These are the values (-b + sqrt(b2 - 4ac))/2a and (-b - sqrt(b2 -

4ac))/2a, and they are real if (and only if) the discriminant b2 - 4ac is non-
negative. If the discriminant is negative, something drastic must be done. Be sure
to specify your procedure. Now, this procedure should be written in two ways:
(1) throw an exception if the discriminant is real and (2) do not use exceptions at
all but print an error message. Which way is better?

E2. Write a function to return the real root(-b + sqrt(b2 - 4ac))/2a of the
quadratic formula ax2 + bx + c (see the previous exercise). If the discriminant is
negative, the function should throw an IllegalArgumentException. Be sure to
write a good specification of the function, and be sure to test the function thor-
oughly.

Exercises for Chapter 10 327

E3. Write a function that changes its String argument of the form "first-name
last-name" into the form "last-name, first-name". Throw an IllegalArgu-
mentException if the argument does not have the right form. Write the function
specification first, and be sure to state what “right form” means to you. Test your
function thoroughly.

E4. Write a function to compute (factorial n), for int value n ≥ 0, i.e. the value
1*2*…*n. (Remember, factorial 0 is 1.) Throw an IllegalArgumentException
if overflow occurs. Specify your function before writing it, and test it thorough-
ly.

E5. Write a function to compute the largest value (factorial n) that can be calcu-
lated using type int. Do this by calculating (factorial 1), (factorial 2), (factorial
3), … using the function of Exercise E4, until a function call causes an exception.
This is an inefficient way to calculate the value, but it gives you practice with
exception handling.

E6. Write a function to read in and return an integer that the user types on their
keyboard. (See Sec. 5.7.1 for reading from the keyboard.) When a line is read as
a string from the keyboard, it has to be converted to an int, say, by using func-
tion Integer.parseInt. This function throws an exception if its argument can-
not be converted to an int, and if this happens, your function should again ask
the user to type an integer on their keyboard.

E7. Create an exception class and several subclasses of it. Then write a program
to demonstrate that a catch-clause parameter with the class type actually catches
exceptions with the subclass types. This will require using the catch-clause
parameter in the catch-block.

328 Chapter 10 Exception handling

Chapter 11

Packages

OBJECTIVES

INTRODUCTION

People invent classifications and categories in order to make things manageable.
In that old game of twenty questions, things of the world are divided into three
categories: animal, mineral, or vegetable. Animals are further categorized into
different kinds, as are minerals and vegetables. And, books in a library are clas-
sified using the Dewey Decimal system. A hierarchy of categories goes as deep
as need be to provide structure and make things manageable.

Because there are hundreds of Java classes to deal with, Java provides a
mechanism for classifying them: the package.

11.1 Using packages

Placing a class in a package
A package is a collection of classes that have been grouped together and

reside in the same folder, or directory, on a computer.
Suppose we have a class OneClass in a file OneClass.java. To specify that

this class belongs to a package named package1, place a package statement on
the first line of file OneClass.java:

package package1;

public class OneClass {

…

}

It is your obligation to see to it that file OneClass.java is placed in direc-

• Provide an understanding of packages in Java.

• Learn how to set variable CLASSPATH.

330 Chapter 11 Packages

tory package1, although your IDE should help you do it.
The name of a package, like package1, as well as the placement of directo-

ry package1, must satisfy certain rules, which we will look at later.

The default package
Actually, you probably will not be using the package statement for some

time. The classes you write do not have a package statement, so they are auto-
matically placed in a “default” package and appear in the project directory for the
program you are writing. If you are using an IDE, various files produced by the
IDE are also in this directory, as well as the .class files that are produced when
classes are compiled.

But you need to know about packages so that you can use the import state-
ment, which we explain momentarily.

Referencing classes in other packages
Suppose we have a second class, TwoClass, which is in a file

TwoClass.java and belongs in the default package, since it does not contain a
package statement. We put a method m in this class:

public class TwoClass {

public void m() {

OneClass d= new OneClass(); //SYNTACTIC ERROR!
...

}

}

Generally, to refer to a class, one simply uses the class name, as in the two ref-
erences to OneClass in the initializing declaration of d above. However, since
class OneClass appears in a different package (package package1), all refer-
ences to it must be preceded by the name of the package. The rule is:

Package-reference rule: A reference to a class that appears in
another, non-default, package, must be preceded by the name of
the package followed by a dot.

Example: package1.OneClass d= new package1.OneClass();

The import statement
This package-reference rule makes referring to classes in other packages

cumbersome. But there is a way around it. If we import the class using a suitable
import statement just before the class definition:

import package1.OneClass;

we do not need to prefix a reference to the class with the package name.
A package may contain many classes, and to write an import statement for

each one can be a chore. Hence, Java provides an abbreviation. The statement

import package1.*;

imports all the classes of package package1. This form of the import statement,
used in the following definition of class TwoClass, is used frequently:

import package1.*;

import package1.OneClass;

public class TwoClass {

public void m() { ... }

}

File TwoClass.java now imports method OneClass twice —in the first and
second import statements. There is nothing wrong with this, although the second
import statement is unnecessary and can be deleted.

11.2 Package names

The directory that contains package package1 may be buried a few levels down
on hard drive C in a Windows environment. Here is the path to the directory on
one laptop:

Windows: C:\Gries\prog\vc\package1

In a Unix environment, the forward slash symbol is used to separate the
items on the path, and a slash typically begins the path as well:

Unix: /usr/Gries/prog/vc/package1

On the Macintosh, the first item of a path is the name of a hard drive or some
other device, and the colon is used to separate items on the path:

Macintosh: Macdisk:Gries:prog:vc:package1

All three systems use the same hierarchical concepts for storing directories
and files; they just use different formats to display paths.

In Java, this path is written without the beginning drive name and with peri-
ods separating the directory names:

Java-path: Gries.prog.vc.package1

In Java, then, we define a package name as follows:

Package name: a package name is any suffix of a Java-path that

11.2 Package names 331

Java syntax: Import statement
import package-name . *;

Example: import javax.swing.*;

Purpose: Allow classes in package package-name to be referenced directly.

begins with a directory name.

Here are package names that can be used to reference class OneClass:

package1

vc.package1

prog.vc.package1

Gries.prog.vc.package1

Such complicated package names are used because packages can contain
other packages. For example, package java contains no classes but many sub-
packages. One of these is package java.lang, which contains classes String
and Math and the wrapper classes like Integer. Package java.lang also con-
tains subpackage java.lang.reflect.

So you see that there is good reason to allow a package name to be a
sequence of directory names separated by periods.

The class path
Java has to know where the directories corresponding to packages are placed

on your computer. Each operating system has a different way of indicating this.
We discuss the issue assuming that we are working on a Windows system.

Class TwoClass, above, imports the classes of package package1 using :

import package1;

The path to this directory is:

C:\Gries\prog\vc\package1

The import statement tells Java what the suffix of the path is: package1. But how
is Java supposed to know where this directory is located? In other words, how
does Java know the prefix that precedes package1 on this path? Java does not
know unless it is told. This is done using an environment variable of the operat-
ing system, called CLASSPATH.

Your program may be using several packages that are on totally different
paths, so variable CLASSPATH may have to contain several different prefixes.
Here is an example of CLASSPATH with two prefixes. The prefixes are terminat-
ed with semicolons:

C:\Gries\prog\vc;C:\VisualCafe\Java\Src;

If you are using an IDE, you do not have to worry about CLASSPATH. The
IDE either sets it for you automatically or provides a way for you to change it.

If you are using just a compiler and not a full IDE, you need to know more
about setting CLASSPATH. We explain this briefly, but get help before you try it.

On a Windows NT computer, look in the Control panel and click on the
System icon; in the window that emerges, click on the System Properties tab.
You should then be able to set variable CLASSPATH.

332 Chapter 11 Packages

On Windows 95, you can use a set statement e.g.:

set CLASSPATH=C:\Gries\prog\vc;C:\jdk\;

In Unix systems
In a Unix system, how you look at and change CLASSPATH depends on which

“shell” you are using, so we give only a brief discussion here. Statement set or
setenv may be used to store a value in CLASSPATH. In this example:

set CLASSPATH=/usr/Gries/prog/vc:/usr/jdk/lib

the colon is used to separate paths and a slash is used to separate directory names.
But do not set CLASSPATH until you know what is already in it —you may want
to add paths to it, not just store a new set of paths in it.

To look at the contents of CLASSPATH, try statement set without arguments.
Also, look in files like .login and .cshrc for statements that set CLASSPATH.

11.3 The packages that come with Java

An implementation of Java comes with over forty packages, some of which con-
tain subpackages. We mention the more important ones.

Package java.lang The most important package (“lang” stands for “lan-
guage”). It is automatically imported, so you do not need an import statement for
it. It extends the core language with several classes that you will use often. Here
are the more important classes.

Class Object is the root of the hierarchy of classes. Every other class has
Object as a superclass, so its methods are inherited by all classes. See Sec. 4.3.1.

Classes String and StringBuffer provide implementations of sequences
of characters. See Sec. 5.2.

The eight wrapper classes, including Integer and Character, provide
instances that contain the values of primitive types. Class Void is used to repre-
sent the primitive Java type void. See Sec. 5.1.

Class Math contains useful methods, like abs, sin, and max. See Sec 1.1.7.
Class Class has methods that provide information about an object. For

example, get the name of the class of object obj using obj.getClass.getName.
Classes Throwable, Error, Exception, and RuntimeException are

involved with exception handling. See Chap. 10.

Package java.applet Provides the basic class, Applet, for implementing Java
programs that run on the world wide web. See Chap. 16.

Package java.awt Contains the classes of the “Abstract Window Toolkit”, which
is used to build GUIs. Some of these classes have been superceded by the Swing
classes —see package javax.swing, below.

Package java.io Contains the classes that help you do input-ouput, or IO. For

11.3 The packages that come with Java 333

example, consider the statement System.out.println(2);. Static variable out
of class System is an instance of class PrintStream, which belongs to package
java.io, and println is a method of this class.

Package java.text Contains classes for formatting numbers.

Package java.util Contains a number of useful utilities, e.g. classes that repre-
sent dates, provide a Gregorian calendar, give methods for processing Strings
into “tokens”, provide dynamic arrays, and provide random numbers.

The Swing package, package javax.swing Provides replacements for some of
the GUI classes in package java.awt and introduces some new GUI classes.
For example, class javax.swing.JFrame is now used instead of class java.-
awt.Frame. See Chap. 17 for a discussion of writing GUIs in Java.

11.4 Key concepts

• Package. A package is a collection of files for Java classes —perhaps organ-
ized as subpackages— that reside in one directory on a hard drive.

• Package name. A package name is a suffix of the path-name on your comput-
er of the directory of the package. However, periods are used to separate com-
ponents on the path, not / or \.

• Class path. You can set variable CLASSPATH in your operating system to con-
tain some paths to directories that contain packages.

• Using a class in a package. To reference a class in a package, use the form
<package-name>.<class-name>. Some path in variable CLASSPATH catenated
with <package-name> must yield the actual path on your computer to the direc-
tory the package.

• Import statement. To remove the need to use the form <package-
name>.<class-name> everywhere in your program, use an import statement
import <package.name>.*;. Thereafter, you can just use <class-name>.

• Java packages. Java comes with hundreds of prewritten classes organized into
tens of packages. Package java.lang is automatically imported in every Java
program.

• Your packages. Your classes are placed in a default package. If you want to
place a class in another package, put a package statement on the first line of the
file for the class —then store the file in the appropriate directory.

334 Chapter 11 Packages

Chapter 12

Interfaces and Nested Classes

OBJECTIVES

INTRODUCTION

We study two object-oriented features of Java. The interface provides a way of
ensuring syntactically (at compile time) that a class contains certain methods. The
nested class allows one to define one class inside another. This means that an
object of the inner class can reside in an object of the outer class, allowing the
inner-class object to reference directly the components of the outer-class object.

The two features are independent, and either can be studied first.

12.1 Interfaces

In Chap. 4, we discussed the notion of an abstract class, like the following one:

public abstract class C {

public abstract void doIt(int par);

public abstract int giveInt(char c);

}

Methods doIt and giveInt are abstract —first, because they include keyword
abstract; second, because their bodies have been replaced by semicolons. Any
(non-abstract) class that extends C must implement these two methods.

We now introduce another mechanism, the Java interface, which provides

Lesson page
12-1

• Learn what an interface is.
• Study interfaces that provide comparisons: Comparable and Comparator.
• Study interfaces for enumerating data: Enumerator and Iteration.
• Learn about nested static classes, inner classes, and anonymous classes.
• Learn about the flattened view of nested classes, which is used by Java.

336 Chapter 12 Interfaces and nested classes

the same capability of forcing a class to implement some methods, but in a dif-
ferent way.

The prefix inter means between, so the word interface means between faces.
In a dictionary, you will find a definition like: a plane or other surface forming a
common boundary of bodies or spaces. In programming, we generally think of
an interface as something that describes how two program parts interact. For
example, the interface might be a specification that describes how one of the pro-
gram parts, the server, can be used by the other part, the client.

In Java, the word interface has a more restricted meaning: an interface is a
specification of the syntax of methods that a class must implement. For example,
this interface indicates that a class must implement method actionPerformed:

/** Interface for receiving action events */

public interface ActionListener {

/** Process event e */
void actionPerformed(ActionEvent e);

}

Each abstract method in an interface definition is like a conventional method
except that its body has been replaced by a semicolon. It is called “abstract”
because there is no implementation, i.e. no method body.

The only modifiers allowed are public and abstract, but you are discour-
aged from using even these since they are the defaults and the only possibility.

Definitions of constants can also appear in an interface definition, but we
save their description for later.

Java will check that any class that purports to implement ActionListener
—we see what this means later— does indeed implement method actionPer-
formed. Java will not check to make sure that the implementation satisfies the
specification given by the comment on the method. Nevertheless, always place
such a comment-specification on each method that is defined in the interface so
that the reader knows what the method is supposed to do.

Implementing an interface
Below, we give a class C1 that implements interface ActionListener, as

indicated by the implements clause implements ActionListener:
Activity
12-1.2

Activity
12-1.1

Java syntax: Interface definition
public interface interface-name {

abstract-method definitions and
constant definitions

}

Purpose: To define an interface.

Java syntax: Method declaration in an interface
type method-name (par-dec , ..., par-dec) ;

Example: int max(int x, int y);

Note: Use void instead of a type for a procedure.

Purpose: To give (only) the header of a method, and
not its body.

public class C1 implements ActionListener {

void actionPerformed(ActionEvent b)

{ code in method body }

}

The presence of the clause implements ActionListener forces class C1 to pro-
vide an implementation of the methods described in interface ActionListener;
otherwise, the class definition is syntactically illegal.

12.1.1 The interface as a type

We just showed how a class could implement an interface. We now go into more
detail about what this means. We show that an interface can be the type of a vari-
able, and we discuss the ramifications of an interface being a type. The follow-
ing two sections contain case studies that use interfaces, and you might want to
peruse them in between studying parts of this section.

Figure 12.1 contains an interface I and two classes F and G. We use short
names for the interface and its methods in order to keep diagrams and text man-
ageable. The names are not important to our goal in this section.

To the left in Fig. 12.2 is an object a0 of class G, with the partition for class
G at the bottom, then the partition for class F, and above that the partition for class
Object. A variable ob contains the name a0.

We want to show how the implementation of interface I within class G
affects the object. To do this most effectively, we replace the lines separating the
components of subclasses by arrows and remove the box around the object —we

Activity
12-2.1

12.1 Interfaces 337

Java syntax: Implements clause
implements interface-name , …, interface-name

Example: implements I, Comparable

Purpose: Placing this implements clause in a class header indicates that
the class implements all the methods of interfaces I and Comparable.

interface I {

void p(C e);

}

public class F { }

public class G extends F implements I {

Button b;

public G() { ... }

void p(C e) { ... }

}

Figure 12.1: Interface I and classes F and G

do not need it since we are dealing with only one object. This is the middle dia-
gram in Fig. 12.2. Thus, we see that object ob is a one-dimensional structure,
moving upward to superclasses.

To the right in Fig. 12.2, we show the object modified to take into account
the fact that G implements I —we added a second dimension to the object, plac-
ing at the end of the arrow the names of all components of interface I.

Casting about in the object
You already know that you can cast object ob to a superclass like F:

F fl= (F) ob;

Since this is a widening cast, Java performs it automatically when necessary.
Furthermore, using name f1, you can reference only components defined in F
and its superclasses, even though the object contains other components. But you
can always cast back to the subclass if you know what that subclass is:

G g= (G) f1;

In the same way, interface I can be used as a type name, and you can cast object
ob to I, using the expression (I) ob, as in

I in= (I) ob;

Here, I is the type of variable in, so you see that interface names can be used as
types. Also, this is a widening cast, so we can actually write this statement as:

I in= ob;

and Java will perform the cast automatically.
In our diagrams of objects as drawn to the right in Fig. 12.2, upward casts

(those that follow an arrow) will be performed automatically, while downward
casts (those that follow an arrow backward) have to be given explicitly.

Consider a method that has a parameter of type I:

void meth(I par) { ... };

Activity 12-2.1
presents this
material in a

far more
understandable

fashion!

338 Chapter 12 Interfaces and nested classes

Figure 12.2: Object a0, a 1-dimensional view, and a 2-dimensional view showing interface it implements

a0

...

...

b
G() p(C)

Object

F

G

Object: ...

F: ...

G: b
G() p(C)

Object: ...

F: ...
I: p(C)

G: b
G() p(C)

ob a0

and a call of the method that has ob as its argument:

meth(ob);

Java automatically casts ob to type I when assigning ob to parameter par.

The contents of a variable of an interface type
Below, we define and initialize two variables of type I:

I x1= (I) ob;

I x2= ob;

Variables x1 and x2 contain the name of the complete object ob, but the only
components that can be referenced are those available from apparent type I.
Thus, component x1.p can be referenced. But what does x1.p refer to? Using
the same kind of rules as for subclasses, the real type of x1 is used to determine
this: it refers to the method of the same name that is defined in class G. Just as
with classes and subclasses, we can say that method p that is defined in class G
overrides the unimplemented method in interface I.

Of course. You can cast x1 from the interface-type back to G:

G h= (G) x1;

thus obtaining again the ability to access all components of the object.

12.1.2 Implementing several interfaces

In return for having a class C implement an interface, a service is provided. For
example, if C implements ActionListener, the implemented method action-
Performed in C will be called when a corresponding button is clicked.

As another example, in the next section, we discuss interface Comparable.
To implement Comparable, a class C has to define method compareTo, which
provides an ordering on the objects of class. In return, several methods can be
used to search and sort arrays whose base type is class C.

/** = -1 if this object < b,
* 0 if this object = b, and
* 1 if this object > b */

int compareTo(Comparable b);

Activity
12-2.2

12.1 Interfaces 339

Multiple inheritance and overriding. An interface or class inherits the methods that are defined
in an interface that it implements, but it always overrides them. Because a class
may implement several interfaces, a method with the same signature may be
inherited from several interfaces. This is not a problem because only the signa-
ture is given in the interface, not the method body. For a complete explanation
of and rules governing multiple inheritance, see the footnotes at the bottom of
lesson page 12-2 of ProgramLive.

If a class needs several such services, it has to implement several interfaces.
To do this, simply write the name of the interfaces (separated by commas) after
keyword implements. For example, class G in Fig. 12.1 could implement not
only I but also Comparable by changing its first line to:

public class G extends F implements I, Comparable {

Of course, class G would then have to implement method compareTo.
Figure 12.3, on the left, shows how we draw the new class G using our

dimensional model. As before, there are dimensions that contain (G, F, Object)
and (G, I). But there is now a third dimension, which contains (G, Comparable).

Upward casts in any dimension are performed automatically, when neces-
sary. Downward casts must be explicitly stated. And at any point, the components
that can be accessed are those at that point and upward in that dimension.

12.1.3 Extending an interface

Suppose we have one more interface, named S:

public interface S {

void pr(int b);

}

Java allows one interface to extend another, so suppose that interface I extends
interface S. Then our dimensional diagram is as shown to the right in Fig. 12.3.
The dimension that contains I is extended to include this new interface.

The form of the extends clause within an interface definition is:

extends interface-name , ... , interface-name

In keeping with the subclass-superclass terminology, we say that S is a
superinterface of I and I is a subinterface of S.

Activity
12-2.3

340 Chapter 12 Interfaces and nested classes

Figure 12.3: Extending two interfaces and an interface extending an interface

Object: ...
Comparable: compareTo

F: ...

I: p(C)

G: b
G() p(C)

Object: ...
Comparable: compareTo

F: ... S: ...

I: p(C)

G: b
G() p(C)

12.2 Comparable and Comparator

Most of the methods we wrote to handle arrays —linear search, binary search,
sorting, etc.— handle only arrays of base type int. We now show how to use an
interface to make these methods more versatile. They will massage arrays of any
base type that is a class and that has a suitable method that provides an ordering
of the instances of the class.

The new versions of these methods will not sort arrays of any primitive type
unless they are wrapped using one of the wrapper classes (see Sec. 5.1).

Interface Comparable
Interface java.util.Comparable has one method, compareTo, which is sup-

posed to provide an ordering of the objects of a class. Here is the interface:

/** Require method compareTo, which provides an
ordering on instances of a class */

public interface Comparable {

/** = -1 if this object < b,
0 if this object = b, and
1 if this object > b */

int compareTo(Object b);

}

Class Compares contains linear search and other methods that deal with
arrays (see Sec. 8.5). We show how to change these methods so that they work
not on an array of ints but on an array of any class whose elements are known
to be ordered (because the class implements interface Comparable). Figure 12.4
shows class Compares with (only) one of its methods.

Activity 12-3.2
is easier to
understand!

Activity
12-3.1

12.2 Interfaces Comparable and Comparator 341

public class Compares {

/** = position of minimum value of b */
public static int min(int[] b) { Comparable b

int p= 0;

// {inv: b[p] is the minimum of b[0..i-1]}
for (int i= 1; i != b.length; i++) {

if (b[i] < b[p]) { b[i].compareTo(b[p])

p= i;

}

}

return p;

}

}

Figure 12.4: Class Compares, showing only method min working on an array of ints

change these to these

To modify it so that min can find the minimum of any array whose base type
is known to have method compareTo defined on it, we change the base type of
parameter b to the name of the interface, Comparable, and change the less-than
relation within the body of the method to a call to method compareTo, as shown
in Fig. 12.4. Here, you can see interface Comparable being used as a class-type,
in that the interface name is used as the type of a variable.

Implementing interface Comparable
Figure 12.5 contains class Pixel, each instance of which represents a pixel

in a window. It has a pair (x,y) of coordinates. Only a constructor and method
compareTo are shown, but there may be other methods. We note three things
about class Pixel.

1. Pixel implements Comparable, as shown in the first line of the class.

2. Parameter ob of method compareTo has type Object, as required by
interface Comparable.

3. Each time parameter ob is used, it is cast back to Pixel —without this
cast, fields x and y of the parameter could not be referenced. This cast
will cause an exception if ob is not really a Pixel. The specification of
compareTo makes clear that ob must be a Pixel.

It may seem like a lot of extra baggage to implement Comparable in class Pixel
—making the parameter be an Object but then casting back to Pixel. However,

Get Compar-
able and class-
es that use it
from lesson
page 12.3.

342 Chapter 12 Interfaces and nested classes

public class Pixel implements Comparable {

private int x = 0; // horizontal coordinate
private int y = 0; // vertical coordinate
...

/** Constructor: instance with horizontal coordinate xp and vertical coordinate yp */
public Pixel(int xp, int yp)

{ x = xp; y = yp; }

/** = 0 if this Pixel and Pixel ob are the same;
1 if this Pixel precedes Pixel ob in row-major order;
-1 if this Pixel follows Pixel ob in row-major order. */

public int compareTo(Object ob) {

if (y > ((Pixel)ob).y) return -1;

if (y < ((Pixel)ob).y) return 1;

if (x > ((Pixel)ob).x) return -1;

if (x < ((Pixel)ob).x) return 1;

return 0;

}

}

Figure 12.5: Class Pixel

we have gained quite a lot. Now, method min of class Compares can be used on
arrays of Pixels. For example, suppose we have an array b of base type Pixel
and that Pixels have been placed in it:

Pixel[] b= new Pixel[1000];

Then we find its minimum by calling method min:

Compares.min(b)

Automatically, method compareTo, which is in each element of array b, will be
used in comparing array elements.

Implementing Comparable in other classes
Interface Comparable has been floating around the world for several years,

but it was not officially in a Java API package until version 1.2. Some classes that
do not implement Comparable can be subclassed to implement it. For example,
Fig. 12.6 defines a subclass of class java.util.Date. Methods before and
equals belong to Date. After defining MyDate, just use it in place of Date.

Classes like String and the wrapper classes (e.g. Integer) cannot be sub-
classed, so in Java 1.1 and earlier, to get the effect of implementing Comparable
on them, you have to write an awkward-to-use class that wraps an int and imple-
ments Comparable. This class should have the necessary getter-setter methods,
perhaps returning the value not only as an int but also as an Integer. Fortu-
nately, interface Comparable was added in Java 1.2 so these sorts of shenanigans
are not necessary any more.

Interface Comparator
Interface Comparator, in package java.util, provides other methods for

comparing elements, one of which is an equality test:

Activity 12-3.3
executes a call
to min, show-
ing how cast-
ing works in a
way we cannot

describe on
paper.

12.2 Interfaces Comparable and Comparator 343

import java.util.date;

public class MyDate extends Date implements Comparable {

/** = 0 if this Date < ob;
1 if this Date = ob;

-1 if this Date > ob */

public int compareTo(Object ob) {

if (this.before((Date)ob))

{ return –1; }

if (this.equals((Date)ob))

{ return 0; }

return 1;

}

}

Figure 12.6: Class MyDate, which extends java.util.Date

/** See below for specs of the two methods */

public interface Comparator {

boolean equals(Object obj);

int compare(Object o1, Object o2);

}

Function equals should yield true if (and only if)

1. obj is also a Comparator, and it imposes the same total ordering as this
Comparator (see below).

2. equals is an equivalence relation, i.e. it is reflexive (x.equals(x)),
symmetric (x.equals(y) == y.equals(x)), and transitive: (if
x.equals(y) and y.equals(z), then x.equals(z)).

3. It is total: any two objects in the domain can be tested for equality.

Function compare returns -1, 0, or 1 depending on whether o1 is less than,
equal to, or greater than o2. Thus, this function imposes a total ordering on ele-
ments. Function compare should also satisfy the following:

sgn(compare(x, y)) == –sgn(compare(y, x))

In particular, if compare (x, y) throws an exception, so does compare(y, x).
Usually, compare(x,y) == 0) == x.equals(y), but it is not necessary.

12.3 Enumeration and Iterator

An enumeration of a set of values is simply a listing of the values. For example,
here is an enumeration of the first four natural numbers: 0, 1, 2, 3. To enumerate
a set of values means to provide an enumeration of it. An enumeration of a
String would be a list of its characters. One could also provide an enumeration
of the links on an html page.

Package java.util contains interface Enumeration, which can be used to
facilitate enumerating the objects of a collection of elements. In this section, we
explore the use of this interface, as well as a newer one, interface Iterator.

Interface Enumeration
Here is interface Enumeration:

public interface Enumeration {

/** = "there are more objects to enumerate" */
boolean hasMoreElements();

/** = the next object to enumerate. If there are
no more, throw a NoSuchElementException */

Object nextElement();

}

Get interface
Enumeration
from lesson
page 12.4.

Activity
12-4.1

Lesson page
12-4

344 Chapter 12 Interfaces and nested classes

Its implementation requires two methods: hasMoreElements and nextElement.
Note that nextElement yields an Object; this method has been made as gener-
al as possible.

A class that enumerates Strings
We use interface Enumeration to write a class (see Fig. 12.7) that provides

an enumeration of the characters of a string. Class StringEnumeration needs
two fields: the string whose characters are to be enumerated and an integer that
indicates the next character to be listed. Integer k is initially 0 because s[0] is
the first character in the enumeration. Note that we describe in comments what
fields k and s are for. Always describe fields of using such a class invariant.

The constructor for StringEnumeration has one parameter, a string. This
parameter is stored in field s.

Method hasMoreElements is easy to write. Since k is the next element to
list, there are more elements if and only if k is less than the length of the String.

The specification of method nextElement requires us to check whether
there is indeed another element and to throw an exception (see Chap. 10) if there
is not. If there is another element, k can be incremented and the character can be
returned. Note that a value of type char cannot be returned because nextEle-
ment has to return an Object. Therefore, the char to be returned is wrapped in
an object of wrapper class Character.

Activity 12-4.2
shows how
easy it is to
change this

into a class to
enumerate

arrays.

12.3 Interfaces Enumerator and Iterator 345

/** An enumeration of the characters in a String, as instances of class Character. */

public class StringEnumeration implements Enumeration {

private String s; // The string to be enumerated

private int k= 0; // s[k] is next char. to be enumerated (none if k = s.length())

/** Constructor: an instance to enumerate characters of sp */
public StringEnumeration(String sp)

{ s= sp; }

/** = "there are more elements to enumerate" */
public boolean hasMoreElements()

{ return k < s.length(); }

/** = The next element to enumerate –-it is of class Character */
public Object nextElement() {

if (!hasMoreElements())

{ throw new NoSuchElementException("no more characters"); }

k= k + 1;

return new Character(s.charAt(k - 1));

}

}

Figure 12.7: Class StringEnumeration

Using StringEnumeration in a procedure to print characters of a String
Now that we have class StringEnumeration, we write a procedure that

uses it to print the characters of a String:

/** Print the chars of s */
public static void print(String s) {

StringEnumeration e= new StringEnumeration(s);

while (e.hasMoreElements())

{ System.out.println(e.nextElement()); }

}

First, the procedure body creates an instance of class StringEnumeration
for s and stores it in local variable e. Next, a loop processes the characters of s,
using e to enumerate the characters, one by one. The loop terminates when e
indicates that there are no more elements. Each loop iteration retrieves the next
element of e and prints it. This loop is so simple that we omit the invariant.

Pay attention to the way Enumeration e is used. Function nextElement
should be called only if it is known that there is another element to process, and
the only way to know that is to call hasMoreElements. Function hasMoreEle-
ments may actually be called several times in a row, but each call of function
nextElement must be preceded by a call to hasMoreElements because that is
the only way to determine whether there is another element to enumerate.

Casting the result of function nextElement
By definition, the result of function nextElement has type Object. In

method print above, we could use the fact that Object has function toString
defined on it in order to print each character in turn. However, it may be neces-
sary to cast the object back to Character in order to suitably process it. To illus-
trate this, in Fig. 12.8 we write a method that constructs a String that consists
of every other character of its parameter.

Get a class
with the

method of Fig.
12.9 from les-
son page 12.4.

346 Chapter 12 Interfaces and nested classes

/** = the string consisting of the first, third, fifth, …, chars of s */
public static String getAlternateCharacters(String s) {

String res= "";

StringEnumeration e= new StringEnumeration(s);

// inv: res contains the alternate chars of the part of s that has been enumerated, and
// an even number of characters has been enumerated
while (e.hasMoreElements()) {

res= res + (Character) (e.nextElement());

if (e.hasMoreElements()) {

Object throwAway= e.nextElement();

}

return res;

}

Program 12.8: Function getAlternateCharacters

Note several things about the loop in this method. First, each iteration
processes two elements of the enumeration, appending the first to res and throw-
ing the second away (if it exists). Second, the character to be appended to res is
cast to class Character, as required. Third, nextElement is called only if it is
known that a next element exists.

A method to print any enumeration
Earlier, we wrote a method to print the characters of a String using a

StringEnumeration. Below, we rewrite this method to print any enumeration,
using the fact that toString is defined on all objects. Instead of a String, the
parameter is an Enumeration:

/** Print enumeration e */
public static void print(Enumeration e) {

while (e.hasMoreElements())

{ System.out.println(e.nextElement()); }

}

We give a simple example of the use of method print:

print(new StringEnumeration(" abcde "));

Also, if a class ArrayEnumeration enumerates the elements of an array, we
can print the elements of an array b using:

print(new ArrayEnumeration(b));

Interface Iterator
Java 1.2 introduced interface java.util.Iterator (see Fig. 12.9) The

names of the methods are different, and there is a new method that allows the
removal of elements from the collection during the iteration.

12.3 Interfaces Enumerator and Iterator 347

public interface Iterator {

/** = the enumeration (or iteration) has more elements */

boolean hasNext();

/** = next element in the enumeration. Throw NoSuchException if there is none. */

Object next();

/** Remove the last element returned by method next(). Call remove at most once per
call to next. The behavior of an iterator is unspecified if the underlying collection is
modified while the iteration is in progress in any way other than by calling remove. If
remove is not supported, throw an UnsupportedOperationException.
If remove is called illegally (e.g. twice for one call of method next), throw an
IllegalStateException. */

void remove();

}

Figure 12.9: Interface Iterator

12.4 Nested classes

Thus far, we have said that each class may contain variable declarations and
method definitions, and method bodies may contain local variable declarations.
We have always placed the definition of a class C (say) in a file C.java.

We now state that a class may be defined in another class, and even in a
method body. Such a class is called a nested class. In this section, we explain
why nested classes are useful, explain restrictions on them, and give examples.

12.4.1 Static nested classes

We look first at a static nested class: a class that is declared with attribute stat-
ic within another class. Consider writing a class WireForm, as in Fig. 12.10,
whose instances represent three-dimensional wire models. The model consists of
a bunch of wires, or straight lines.

The components of class WireForm are of no interest in this discussion, and
we have placed three components in it only to illustrate. However, WireForm will
probably use something like class Line, shown also in Fig. 12.10, which has
three fields to describe the beginning of a line and another three to describe the
end of the line. Class Line would be placed in its own file, Line.java.

This organization has a big disadvantage. There is a proliferation of classes
for users of WireForm to contend with. Why should users have to see class Line
when it is used only by class WireForm, and not directly by users? In fact, the
designers of WireForm may not want users to see class Line. The principle of
information hiding (see Sec. 3.1.1) says to make visible only what users need to
see, and this principle is violated here.

We can move toward the principle of information hiding by placing the def-
inition of class Line within class WireForm instead of in its own file, as shown
in Fig. 12.11. We make class Line a static class, as shown in Fig. 12.12, so it is
a static nested class.

Activity
12-5.2

Lesson page
12-5

348 Chapter 12 Interfaces and nested classes

/** A wire form */

public class WireForm {

public static int x;

private int y;

public int meth(...) {...}

...

}

/** An instance represents a line in 3 dimensions */

public class Line {

double x1, y1, z1; // Coordinates of start of line
double x2, y2, z2; // Coordinates of end of line

}

Program 12.10: Classes WireForm and Line (in different files)

Now, there is no need for a file Line.java, so that is one less file to deal
with. Moreover, although we can leave class Line public, we prefer to make it
private so that the user cannot refer to it. We have followed the principle of infor-
mation hiding.

Static nested classes and the inside-out rule
Most programming languages adhere to the inside-out rule, which was dis-

cussed in Sec. 3.1.2. You have used this rule already. For example, statements
within the body of method meth (in class WireForm) can reference variables y
and x, which are declared in the enclosing class. This inside-out rule applies to
static nested classes, as follows:

1. A static nested class may refer to static items of the outer class. Therefore,
within Line, x can be referenced (see Fig. 12.11).

2. A static nested class may not refer to non-static items of the outer class,
so within Line, variable y and method meth may not be referenced.

When to use a static nested class
Here is a general guideline for when to use a static nested class:

If the purpose of a class In is simply to support another class Out
—meaning that In is used only in Out and in no other part of the
program— and if In makes no reference to non-static components
of Out, then make In a static nested class of Out.

Thus, use static nested classes to improve the structure of your program and
to make the program more manageable. Also, use static nested classes to hide
classes that the user need not know about —follow the principle of information
hiding (see Sec. 3.1.1).

12.4 Nested classes 349

/** An instance represents a wire form */

public class WireForm {

public static int x;

private int y;

public int meth(...) {...}

...

/** An instance represents a line in 3 dimensions */

private static class Line {

double x1, y1, z1; // Coordinates of start of line
double x2, y2, z2; // Coordinates of end of line
...

}

}

Figure 12.11: Class WireForm with static nested class Line

The file drawer for a static nested class
In our model of execution, each class has a file drawer in a filing cabinet.

By our rules, static components of a class are placed in the file drawer for the
class. Since static class Line is defined inside class WireForm, its filing cabinet
belongs inside WireForm’s filing cabinet —we have to cram one file drawer
inside another! Figure 12.12 shows the situation, with the filing cabinet drawers
drawn as boxes. The file drawer for class Line shows one instance of the class,
and there are no static components.

Above, we mentioned the general inside-out rule, which is discussed in Sec.
13.1.2. Applied to a static nested class and in terms of our file-drawer model, the
inside-out rule is interpreted as follows:

Inside-out rule for static nested classes. Suppose the file draw-
er for static nested class In is inside another file drawer Out. Then
In’s methods can reference each static component x of Out direct-
ly (unless In redefines x).

All instances of Line are in Line’s file drawer, so they can reference x.

12.4.2 Inner classes

An inner class In (say) is a class that is defined within another class Out (say)
without modifier static. Class In could be defined as a component of Out, or
it could be defined within a method. Here, we discuss the case that class In is
defined as a component of class Out, and not within a method.

We describe the use of an inner class using the following example. Class
BankAccount, outlined in Fig. 12.13, is used to maintain bank accounts. Each
instance of the class maintains the account number and the balance. There are
methods for depositing an amount and withdrawing an amount. There could be
other types of transactions as well —adding interest, charging a service fee, and

Activity
12-6.1

Activity
12-5.2

350 Chapter 12 Interfaces and nested classes

Figure 12.12: The file drawer for a static nested class

WireForm’s file drawer

x ...

a0

meth(...)

WireForm

y ...

Line’s file drawer

a1

Line

x1 .. y1 .. z1 ..

x2 .. y2 .. z2 ..

so forth. The class contains all the necessary getter/setter methods, but we do not
show all methods, for lack of space.

The bank must maintain records of transactions. For this purpose, we define
class Transaction, also in Fig. 12.13. An instance of this class maintains the
account number, the kind of the transaction, and the amount of the transaction.

We must modify methods deposit and withdraw in class BankAccount to
create instances of class Transaction, but first, we discuss the structure of this
program. Class Transaction is in its own file and is public, so the user of this
bank-account program sees it and can reference it. The principle of information
hiding (see Sec. 3.1.1) would have us hide class Transaction since the user does

12.4 Nested classes 351

/** A bank account */

public class BankAccount {

/** account number, amount in account, and last transaction carried out
("deposit" or "withdrawal") */

private int account;

private int balance;

private Transaction lastTransaction;

// Getter and setter methods omitted.

/** Deposit amount in this account */

public void deposit(int amount)

{ balance= balance + amount; }

/** Withdraw amount from this account */

public void withdraw(int amount)

{ balance= balance – amount; }

}

/** An instance is a bank-account transaction */

public class Transaction {

/** account number, type of transaction ("deposit", "withdrawal"), and amount */
int account;

String transaction;

int amount;

/** Constructor: instance for account a, kind t, and amount n */
public Transaction(int a, int n, String t)

{ account= a; transaction= t; amount= n; }

/** representation of this transaction */

public String toString()

{ return account + ": " + transaction + " " + amount; }

}

Figure 12.13: Classes BankAccount and Transaction (in separate files)

not need to know about it. Further, it would be nice to structure the program so
that Transactions for an account are connected more closely to that account
instead of using a field account to indicate which account it is.

To do this, we make class Transaction an inner class of BankAccount, as
shown in Fig. 12.14. You already know that non-static fields account and bal-
ance belong in each instance of BankAccount. Since class Transaction is also
nonstatic, a file drawer for it also belongs in each instance of BankAccount.

Since each instance of Transaction is within a Transaction file drawer,

Get the class
of Fig. 12.15
from lesson
page 12.6.

352 Chapter 12 Interfaces and nested classes

/** A bank account */

public class BankAccount {

/** account number, amount in account, and last transaction carried out
("deposit" or "withdrawal" */

private int account;

private int balance;

private Transaction lastTransaction;

// Getter and setter methods omitted.

/** Deposit amount in this account */

public void deposit(int amount) {

balance= balance + amount;

lastTransaction= new Transaction(amount, "deposit");

}

/** Withdraw amount from this account */

public void withdraw(int amount) {

balance= balance – amount;

lastTransaction= new Transaction(amount, "withdrawal");

}

/** A bank-account transaction */

private class Transaction {

/** type of transaction ("deposit", "withdrawal") and amount */
String transaction;

int amount;

/** Constructor: instance for this account, kind t, amount n */
public Transaction(int n, String t)

{ transaction= t; amount= n; }

/** representation of this Transaction */
public String toString()

{ return account + ": " + transaction + " " + amount; }

}

}

Program 12.14: Class BankAccount, with inner class Transaction

and since the file drawer is within some instance of BankAccount, the general
inside-out rule indicates that methods in class Transaction can access fields
balance and account. This means that field account of class Transaction is
no longer needed, so we removed it from the inner class. We have achieved a
closer bond between classes Transaction and BankAccount.

We also made class Transaction private so that it cannot be referenced out-
side class BankAccount, thus following the principle of information hiding.

Finally, simply to illustrate the creation of instances of class Transaction,
we added a field to BankAccount to contain the last transaction that was carried
out; and we added statements to methods deposit and withdraw to create a
Transaction and store it in the new field trans.

This example illustrates three reasons for using an inner class:

1. To improve the structure of the program.

2. To hide a class.

3. To make it possible for the inner class to reference non-static components
of instances of the outer class.

When to use an inner class
Here is a general guideline for when to make a class an inner class.

12.4 Nested classes 353

/** A list of bank accounts */

public class Bank {

// Class invariant: the accounts are in bank[0..size-1]
private BankAccount[] bank;

private int size;

}

/** A (reverse) iterator for bank accounts */

public class BAIterator implements Iterator {

/** bank[0..n-1] remains to be enumerated */

private int n= size; // ILLEGAL REFERENCE TO size

/** = " there is another account to be enumerated." */
public boolean hasNext()

{ return n > 0; }

/** = the next item to be enumerated */

public Object next() {

n= n - 1;

return bank[n]; // ILLEGAL REFERENCE TO bank
}

}

Figure 12.15: Class Bank and BAIterator (as separate files)

Guideline for using an inner class. If the purpose of a class In
is simply to support another class Out —meaning that In is used
only in Out and in no other part of the program— and if In needs
to reference non-static components of Out, then make In an inner
class of Out.

An inner class that is an iterator
We provide a second example of a useful inner class, having to do with iter-

ators. Consider a class Bank that maintains a set of bank accounts, as outlined in
Fig. 12.15. The accounts are stored in array segment bank[0..size-1]. Con-
sider writing an Iterator that will produce the accounts, but in reverse order.
We show it as a separate class, also in Fig. 12.15.

Activity
12-6.3

354 Chapter 12 Interfaces and nested classes

import java.util.*;

/** An instance is an array of bank accounts */

public class Bank {

// Class invariant: the accounts are in bank[0..size - 1]

private BankAccount[] bank;

private int size;

/** A (reverse) iterator for bank accounts */

private class BAIterator implements Iterator {

/** bank[0..n-1] remains to be enumerated */

private int n= size;

/** = "there is another account to enumerate" */

private int hasNext()

{ return n > 0; }

/** = the next item to be enumerated */

public Object next() {

n= n - 1;

return bank[n];

}

/** remove is not implemented */

public void remove() {}

}

/** An iterator that enumerates bank accounts in reverse order */

public Iterator iterator()

{ return new BAIterator(); }

}

Figure 12.16: Class Bank, with BAIterator as an inner class

Class BAIterator has several problems. For example, it cannot access the
array of accounts or field size of class Bank directly (as attempted in the initial-
ization of field n). So, Bank has to have getter methods for fields bank and size,
and an instance of class Bank has to be passed to the Iterator. But then BAIt-
erator needs a constructor that has an object of class Bank as parameter. Thus,
several complications arise in attempting to get the two classes to communicate.

These problems arise because BAIterator is separate from class Bank. The
solution to these problems is to make BAIterator an inner class of Bank, as
shown in Fig. 12.16.

Now, by the inside-out rule, the references to size and bank within class
BAIterator refer directly to fields bank and size of class Bank.

Note that we made class BAIterator private so that it cannot be referenced
from outside. But we provide method iterator to obtain new instances of
BAIterator. The return type of method iterator is not BAIterator but Iter-
ator —the user of class Bank does not even know about the name BAIterator
and can never reference it. This is the standard way of making such an iterator
available outside the class.

Study this class and its inner class carefully; use this pattern whenever an
inner iterator class is desired.

The file drawer for an inner class
In Fig. 12.17, we show a class Out with an inner class In. In our model of

execution, each class has a file drawer in a filing cabinet, and the question you
may ask is where the file drawer for inner class In goes. Each instance of Out is
supposed to contain the non-static components of Out. Since In is now a non-
static component, a file drawer for In is in each instance of Out!

Figure 12.18 contains an example of Out’s file drawer, with two manilla
folders and the static variable. Each folder of class Out contains a file drawer for
In, with one folder showing.

With respect to Fig. 12.17, the inside-out rule, which defines what a partic-
ular part of a program can reference directly, indicates the following with respect

Activity
12-6.2

Get the class
of Fig. 12.17
from lesson
page 12.6.

12.4 Nested classes 355

public class Out {

public static int x;

private int y;

public int meth() {...}

class In {

int z;

void meth2()

{ z= y; }

}

}

Figure 12.17: Classes to illustrate file drawers for inner classes

to method meth2 within object a1:

The body of meth2 in a1 can reference z of a1, method meth of
a0, variable y of a0, and static variable x of class Out.

Note that:

meth2 in object a1 can reference variable y of object a0;
meth2 of object a3 can reference variable y of object a2.

Thus, the conventional inside-out rule, together with the fact that each
instance of class Out contains a file drawer for class In, ensures that each method
meth2 references the correct components.

12.4.3 The flattened view of inner classes

Our model of execution has us cramming a file drawer for a class inside the file
drawer for another class. How do we reconcile this model of execution with the
fact that computer memory consists of a sequence of bytes? We can answer this
question partially by providing a flattened view of the classes in which each class
has its own file drawer and no file drawer appears within another. As we discuss
later, this is quite close to how Java implements inner classes.

Recall class Out with its inner class In, as shown in Fig. 12.17, and Fig.
12.18, which shows In’s file drawer inside each instance of Out. Figure 12.19
displays a “flattened” view of the classes in which class In's drawer is not
crammed within another file drawer.

The first thing to note is that instances of Out do not contain a file drawer

Activity
12-6.4

356 Chapter 12 Interfaces and nested classes

Figure 12.18: The file drawers for an inner class

Out’s file drawer

x ...

a2

a3

z

In’s file drawer

In

meth2()

y

meth()

Out

a0

a1

z

In’s file drawer

In

meth2()

y

meth()

Out

12.4 Nested classes 357

for In. Instead, they contain a variable In that contains the name Out$In of a file
drawer. This name is chosen to indicate where the file drawer for class In really
belongs —inside objects of class Out. As can be seen, drawer Out$In contains
the contents of all of In’s drawers in the inner-class view. Note that the name of
the class in each instance is given as the name of the file drawer.

In the flattened view, we have lost the information that instance a1 occurs
not only within In’s file drawer but also within instance a0. To recover this infor-
mation, each instance of In has a “scope box”, which contains this information.
The two objects of class In, a1 and a3, both contain a scope box.

Finally, the flattened view does not contain the information that each draw-
er of In is contained in Out’s file drawer. To recover this information, we place
a scope box in the upper right corner of In’s file drawer.

The question may arise whether the flattened view is really a suitable model
of memory for inner classes. To convince yourself that it is, simply convince
yourself that you can unambiguously create the flattened view from the original
view and the original view from the flattened view. If this is the case, they have
the same information, and either view can be used.

Java uses essentially the flattened view for inner classes. You can see this for
yourself. Start your IDE and set it to create a folder of the compiled classes
instead of a jar file. In the folder of compiled classes you will see a file
Out$1.class, which contains the information about inner class In. We have
chosen the name Out$In instead of Out$1 to make it more understandable.

Figure 12.19: The flattened view of an inner class

Out’s file drawer

x ...

a0

a1

z

In’s drawer, named Out$In

Out$In

meth2()

y

meth()

Out

In Out$In

a2

y

meth()

Out

In Out$In

a0

Out

a3

z

Out$In

meth2()

a1

12.4.4 Local inner classes

A class that is defined within a method body is called a local inner class, or sim-
ply a local class —yes, just as a method can have local variables, it can have
local classes. This means that the file drawer for the class is created within a
frame for a call whenever the method in which it is defined is called.

We illustrate the use of a local class with function revIt, which yields an
iterator over its parameter, array b. Thus, we show how to obtain an iterator over
any array. The outline of this method is shown in Fig. 12.20. The parameter has
modifier final for technical reasons, which we will explain later. The method is
static because it does not refer to components of the class in which it was
defined. The method is placed in a class Out simply to have a place to put it. It
could be placed in any class.

An iterator is an instance of a class that implements interface Iterator, so
we have to define that class. We place this class right in the method itself, as a
local inner class. See Fig. 12.21. The return statement of the method is then
changed to return (the name of) a new instance of local class ItOver.

We do not discuss the memory model for local inner classes here. The expla-
nation is given in a much clearer fashion than we could do here on paper, in in
activity 12-7.1 of ProgramLive.

Parameter b of method revIt must have attribute final because the value
of the parameter is being stored in a field of the local inner class —this is what
is required to allow a simple, efficient implementation.

When to use a local class
A local class LC defined in a method m can be used to:

1. Improve the structure of the program, placing LC only where it is needed.

2. Hide LC

3. Make available to LC the final parameters and local variables of m.

4. Make available to LC the components of the class in which m appears.

Activity 12-7.1
presents the

memory model
for local inner

classes.

Get this pro-
gram from les-
son page 12.6.

Activity
12-7.1

358 Chapter 12 Interfaces and nested classes

public static class Out {

/** = an Iterator over b's elements in reverse */

public static Iterator revIt(final Object[] b)

{ return ?; }

}

Figure 12.20: Interface Iterator

Rules for local classes
A local class is an inner class. Therefore, it must satisfy all the rules for an

inner class. In addition, any local variable and parameter that it references must
be declared final so they cannot be changed after its initialization. Below, we
state the restrictions on a local class that is defined within another class. In the
class shown in Fig. 12.22, we have made inner class In public just in order to
give the rules most easily. Generally, inner classes would be made private.

Refer to Fig. 12.22 when reading the following rules for local inner classes:

1. The parameters and local variables that In accesses must have modifier
final. In Fig. 12.22, In can access parameter p1 and local variable
local1, but In cannot reference p2 and local local2, since they are not
final. The example program shows how to access the value of a non-
final parameter or local variable —assign it to a final local variable.

2. The only static components that In may have are final static fields that
are initialized with expressions that contain only constants and literals.

3. Class In can access all the static components of class Out even if they are

See also a foot-
note on lesson

page 12.7.

12.4 Nested classes 359

import java.util.*;

public class Out {

/** = an Iterator over b's elements in reverse */

public static Iterator revIt(final Object[] b) {

/** a (reverse) Iterator over b */
class ItOver implements Iterator {

/** b[0..n-1] remains to be enumerated */

int n= b.length;

/** = "there is another element to process" */

public boolean hasNext()

{ return n > 0; }

/** = the next item of the iteration */

public Object next() {

n= n - 1;

return b[n];

}

/** remove is not implemented */

public void remove() {}

}

return new ItOver();

}

}

Program 12.21: A local inner class

private. This is because In is defined in and is part of class Out.

4. If method meth is non-static, class In can reference all the non-static
components of class Out even if they are private. This is because In is
defined in and is part of class Out.

5. Inner class In may extend another class and implement interfaces. In
may be extended by another class.

6. Just as local variable local1 cannot be accessed outside of method meth,
class In cannot be accessed directly outside method meth.

12.4.5 Anonymous classes

We now describe the last kind of class, the anonymous class. An anonymous
class is a class that does not have a name. That may sound kind of silly until you
stop and think about it. Why does something have a name? Because it will be
called by that name, usually many times. If something is never called or referred
to, there is no need to give it a name. Moreover, in Java, if a class is called just
once, there is a way to write it so that the name is not necessary even then.

Consider class Out, of Fig. 12.21, which contains method revIt. Local
inner class ItOver is accessed in only one place, in the return statement.
Therefore, it is a candidate for becoming an anonymous class. In Fig. 12.23, to
describe most easily how to make ItOver into an anonymous class, we show the
class with its body replaced by <body of class>.

To make ItOver into an anonymous class (see Fig. 12.24), do the following:

1. Replace the expression after new by “Iterator() <body of class>”. Note
that there is no semicolon after <body of class> (because it ends in a
brace).

2. Remove the definition of class ItOver.

We now have an unnamed class, which implements Iterator.

When to use an anonymous class
Consider using an anonymous class when a class is accessed only once. But

use anonymous classes sparingly, perhaps only when the body of the class con-
tains one or two methods, because the syntax is difficult to follow. The body of

Activity
12-7.2

360 Chapter 12 Interfaces and nested classes

public class Out {

void meth(final int p1, int p2) {

final int local1= p2;

int local2;

public class In { … }

}

Figure 12.22: A local class, used to explain the rules of local classes

12.5 Key concepts 361

the anonymous class in this example is almost too long—that is why we replaced
the body with <body of class> when explaining the creation of the anonymous
class. In this fashion, you could see how simple it is to make a local inner class
into an anonymous class.

12.5 Key concepts

• Interface. A Java interface definition can have (in its body): (1) initializing
declarations of public static final variables and (2) declarations of public abstract
methods.

• Implementing an interface. If a class implements an interface, the class inher-
its all the components that the interface declares (or inherits from superinter-
faces). Since the inherited methods are abstract, the class must provide overrid-
ing declarations for all the inherited methods.

• An interface as a type. An interface is treated like a class-type. If a variable vc
contains the name of some class C that implements an interface I, then vc can be
cast to I, e.g. as in the assignment I vi= (I) vc;. This is a widening cast, and
such widening casts do not have to be explicitly requested. The apparent type of
variable vi is I, so that, syntactically speaking, only the components defined in
I can be referenced using vi. However, such a widening cast does not lose infor-
mation, and vi can be cast with a narrowing cast back to C, e.g. with (C) vc.
Then, all the components declared in or inherited by C can be referenced.

• Multiple inheritance. A class can implement more than one interface. In doing

public static class Out {

/** = an Iterator over b's elements in reverse */

public static Iterator revIt(final Object[] b) {

/** a (reverse) Iterator over b */
class ItOver implements Iterator <body of class>

return new ItOver();

}

}

Figure 12.23: Interface Iterator

public static class Out {

/** = an Iterator over b's elements in reverse */

public static Iterator revIt(final Object[] b) {

return new Iterator() <body of class>
}

}

Figure 12.24: An anonymous class

so, it may inherit the same method signature more than once. This is no problem
because the methods are abstract and must be overridden anyway.

• Flexibility with arrays. Interfaces provide a way of writing one method that
can work with many different types. For example, using interface Comparable
or interface Comparator, we can write one procedure to sort any array whose
elements are of any class C that implements Comparable.

• Writing loops. By properly implementing interface Enumerator or interface
Iterator, we can make it easy to write loops that enumerate sequences of val-
ues. For example, we can make it easy to write a loop to sequence through the
characters of a string or the prime numbers in some range or the tags on an html
page.

• Listeners. The interface is the prime mechanism for connecting an event in a
GUI, like a press of a button or a keystroke, with a method, called a listener, to
process it.

• Nested classes. A nested class is a class that is declared within another class.
The reasons for using a nested class are: (1) to allow the nested class to refer
directly to components of the outer class, (2) to reduce the proliferation of .java
files, (3) to provide for better information hiding, and (4) to provide for better
software engineering

• Kinds of nested class. A static nested class is a static class that is declared as
a component of another class. An inner class is a non-static class that is declared
either as a component of some class or in a method of some class —in the latter
case, the class is called a local inner class.

• Anonymous class. If a local inner class is referenced in only one place, Java
has a syntax for it that eliminates the need to give the class a name. When one
uses this syntax, the class is called an anonymous class.

• Flattened view of inner classes. In our model, the file drawer for an inner class
appears within the file drawer for the class in which it is declared. This model,
along with Java’s inside-out rules, helps clarify the concept of an inner class and
the reasons for using them. When Java is executing a program, however, a more
flattened view of the classes is implemented in which no file drawer for a class
resides in the file drawer for another class.

Exercises for Chapter 12

E1. Activity 8-5.3 of the CD ProgramLive contains a footnote that has a link to
a file, Sorting.java, that contains several methods that process arrays of ints.
Obtain that file and modify the methods so that they process arrays of any base
type that implements interface Comparable. Be sure to test your methods thor-
oughly.

362 Chapter 12 Interfaces and nested classes

E2. Look at the specification of class Integer in the Java API specifications.
See whether it implements interface Comparable. Write a program that has an
array of Integers, fill the array with values, and test some of the methods of
exercise E1 using this array.

E3. Look at the specification of class Point in package java.awt. Notice that it
does not implement interface Comparable. This is because there is no standard
way to order points (x,y) in the plane. Write (and test) a subclass of Point that
does implement class Comparable. Here is one way to compare two Points p
and q. p < q if one of the following holds:

p.x2 + p.y2 < q.x2 + q.y2

p.x2 + p.y2 = q.x2 + q.y2 and p.x < q.x

p.x2 + p.y2 = q.x2 + q.y2 and p.x = q.x and p.y < q.y

E4. Write a class that enumerates the indices of the letter c in a String s. The
class should implement interface Enumeration. The constructor of the class
should have c and s as parameters.

E5. Write a class that enumerates the factors of an integer k, where k ≥ 1. The
class should implement interface Enumeration. The constructor of the class
should have k as a parameter. The factors of k are all positive integers that divide
k, including 1 and k. For example, the factors of 6 are 1, 2, 3, and 6.

E6. Write a class that enumerates the primes that are at most k. The class should
implement interface Enumeration. The constructor of the class should have k as
a parameter. A prime is an integer that is at least 2 and has no factors other than
1 and itself. Can you use the Enumeration from exercise E5 to write this class?

E7. Write a class that enumerates the indices i of an array b such that either i =
0 or b[i - 1] > b[i]. The class should implement interface Enumeration. The
constructor of the class should have b as a parameter. Here is an example. For the
array {4,5,3,6,2,1,2,4,6,6}, the enumeration consists of the integers 0, 2,

4, 5.

E8. Write a class that enumerates the upper-case letters (i.e. characters in the
range 'A'..'Z') in a String s. The class should implement interface
Enumeration. The constructor of the class should have s as a parameter.

E9. Write a class that enumerates html tags in a String. The class should imple-
ment interface Enumeration. An html tag is a sequence of characters of this
form:

< (any sequence of characters not containing '>', including white space) >

So, a tag begins with < and ends with >. Examples: <html>, <body>, <p>, </p>,
and
. Do not worry about the correctness of the stuff between < and >.

E10. Write a class that enumerates the html tags in a String s that start with ”<a”.

Exercises for Chapter 12 363

There may be whitespace between the < and the a, and their must be whitespace
after the a. The class should implement interface Enumeration. The constructor
of the class should have String s as a parameter. Note that this enumeration is
most easily written using the class of exercise E9 that enumerates all HTML tags.

E11. Write a class that enumerates the “words” in a String s. For this exercise,
we define a word to be a sequence of non-whitespace characters. For example,
the String "Love all,\nserve all." consists of the words "Love", "all,",
"serve", and "all.". The class should implement interface Enumeration. The
constructor of the class should have string s as a parameter.

364 Chapter 12 Interfaces and nested classes

This part covers various aspects of programming:

Programming style.
Testing and debugging.
Exception-handling.
Recursion.
Applications and applets in Java.
GUIs and event-driven programming.

We place these topics here, rather than sprinkle them throughout the
text, for organizational purposes. Programming style and testing/debug-
ging should, of course, be taught at almost every step of a course, but it
helps to have all the discussions of them in one place, for reference.

Applications and applets can be taught at almost any time, but we
have found out that, if one uses an IDE like BlueJay or DrJava, later
makes more sense.

Exception handling, recursion, and GUIs are usually not taught in a
first programming course, but they could be.

Part III

Aspects of Programming

Chapter 13

Programming Style

OBJECTIVE

INTRODUCTION

Your program should be readable, because if it is not readable, the chances of its
being correct are slim. Moreover, if it is unreadable, it will be difficult and time
consuming to test and debug it —to find and correct the errors in it. Take the time,
right from the start, to follow disciplined, careful, programming practices; it will
pay off in the long run. Every time you read your program, because you are mod-
ifying it or debugging it, you will take less time if the program is readable. So,

The major reason for using a disciplined style of programming is
to save you time when dealing with your programs. The best way
to reduce the burden of debugging is not to put errors in the pro-
gram in the first place. Following disciplined programming prac-
tices can help immeasurably in this regard.

Your program should be readable by others as well, not just you. For exam-
ple, consider a program that you have to write for a programming course. The less
time a grader has to spend on your program, the more positive they will feel
toward you and the better your grade will be.

In the professional world, making programs that are readable by others is
even more important. Most programs live a long time and require “maintenance”
—changes to adapt them to new and different requirements, upgrades in other
software, new hardware, and so forth. Quite likely, the author of the program will
not be around when maintenance is required, so someone else must read and
understand the program enough to update it successfully.

Some of the programming habits discussed in this chapter concern syntacti-
cal measures, like indenting program parts properly and using certain conven-

Lesson
page 13.1

• Describe good styles for presenting programs and the reasons for them.

368 Chapter 13 Programming style

tions for names of variables. Others concern recording information in comments
for the reader to understand how a program is designed and why. All are equally
important; a chain is no stronger than its weakest link.

It is important to follow good programming conventions all the time. Taste
and care are not things that you can turn on and off at will; either you have these
qualities or you do not. So, right from the start, be disciplined and try to learn and
practice good programming style.

Programming style refers not only to the presentation of a program but also
to the way one goes about programming. Two people may end up with essentially
the same program, but how they got there might be totally different. One person
may use a disciplined, effective style, which took two hours; the other may have
required fifteen hours because their ineffective programming style led to a pro-
gram with many bugs, greatly increasing the testing and debugging time.

Below, we give some guidelines for programming and discuss them.
Following these guidelines will reduce the time spent programming and, more
importantly, the time spent testing and debugging because fewer bugs will be
introduced into programs.

Guideline 1. Specify a program segment before developing it
The following guideline makes sense to most people:

1. Do not try to solve a problem until you know what the problem
is.

In programming, this guideline is expressed in several ways. For example:

1a. Write a clear and precise specification for a method before
writing the method.

This specification must include a description of all parameters of the method.
Also, if a section of code is long and complicated:

1b. Use statement-comments to make code appear short and man-
ageable.

Bugs creep into a program because you forget precisely what a section of
code is supposed to do and you end up using it in a different way than was intend-
ed. Having a precise specification relieves you of the need to remember and thus
saves you from making the error. Specifications also save time during the devel-
opment process; when using a method, you have to read and understand only the
specification and not the method body.

We use the program of Fig. 13.1 to see how following guideline 1 could have
helped. We want to call method numberOfPrimes, but we forget what range of
integers it investigates. A hurried glance at the method body might give us the
idea that the range is 2..103, but that is wrong. If the specification

/** = the number of primes in 2..102 */

had been written before the method body was written, the problem of figuring
out what the method did and the resulting mistake in writing a call would not
have arisen.

Guideline 2. Define variables
Suppose you are asked whether variable x in the method of Fig. 13.1 is ini-

tialized correctly. You will probably reply with another question, “well, how is it
used, what is its meaning?” You are right to answer this way, and if you took this
idea further into your own programming, you would:

2. Write down the meaning of a variable before you use it.

This meaning should appear near the declaration of the variable, be it a static
variable, a nonstatic variable, or a local variable.

A student once told us that programming was easy; all you had to do was to:

Define your variables. Write the program to keep values consis-
tent with the definition while making progress in the calculation.

Many program errors are made by inconsistent use of variables, which is caused
by not writing down their definitions.

In the method of Fig. 13.1, variables x and i have to be defined together:

x is the number of primes in the range 2..i-1.

Guideline 3. Keep documentation and program consistent
Finally, do your best to keep documentation and program consistent. Here

are some examples.
If you decide to change what a method does:

3a. Change the method specification, then the method body.

Introduction 369

public static int numberOfPrimes() {

int x= 1;

for (int i= 3; i != 103; i= i + 1) {

boolean b= i > 1;

int k= 2;

while (b && k != i) {

if (i%k == 0)

{ b= false; }

k= k + 1;

}

if (b)

{ x= x + 1; }

}

return x;

}
Figure 13.1: Counting primes —with missing specifications and other comments

If you decide to change what the implementation of a statement-comment doe:,

3b. Change the statement-comment, then the implementation.

Concerning variables and their meanings:

3c. Change a variable definition, then statements that use it.

Obviously, documentation that is inconsistent with the program is sure to
lead to bugs. Following these guidelines will help reduce the bugs in your pro-
gram and thus the time spent debugging.

13.1 Naming conventions

We describe guidelines and conventions for naming variables, methods, classes,
and packages.

13.1.1 Conventions for variable names

Some people will tell you to make variable names long and mnemonic in order
to encapsulate what the variable means in the name itself. Others will tell you to
use short names, like x and p1 because they make a program look shorter and
manageable. There is a tension between using meaningful names and keeping
names short. The best way to solve the dilemma is to use different rules for dif-
ferent situations. Java has four kinds of variable: (1) parameter, (2) local vari-
able, (3) instance variable (or field), and (4) class variable (or static variable),
and using a different, well-thought-out convention for each one makes sense.

General Guidelines
Here are some general guidelines to be followed for variable names:

1. A variable name should consist of small letters, except that all “words” with-
in it (except the first) should be capitalized. In Java, this convention is almost
universally used. Here are some variable names that follow this convention:

x numberOfDogs footSize yCoordinate

2. Do not use a long mnemonic name as a substitute for a careful definition of a
variable in a comment; names rarely convey the complete meaning of the entity
that they name.

3. Make the length of a variable name proportional to the size of its scope. Local
variables have the smallest scope, then parameters, then instance and static vari-
ables.

With these general guidelines, we now turn to more detailed ones.

Lesson page
13-2

370 Chapter 13 Programming style

13.1 Naming conventions 371

Conventions for naming parameters

1. Use short, easily remembered or mnemonic names. You can do this because:

(a) Parameters are explained in the method specification.

(b) Method bodies are short enough to allow easy access to the parameter
specs. (Many methods are short enough to fit on a computer screen.)

2. Remember that methods are usually written to be general, and parameter
names should reflect that generality. For example, consider a function that finds
the minimum of two variables price and salePrice. Do not name the parame-
ters price and salePrice, name them x and y, and write a general function to
find the minimum of x and y.

Conventions for naming local variables

1. Use short names for local variables, making them mnemonic if possible, but
be sure to explain the use of each local variable in a comment that is placed near
its declaration. You can use short names because:

(a) Next to the declaration of each local variable is its definition.

(b) Method bodies are short enough to allow easy access to the declaration
of and comments for local variables. (A method is generally short enough
to fit on a computer screen.)

2. A local variable that is used in just a few statements may not need a comment.

Conventions for naming instance variables and class variables

1. Use longer names that convey some idea of the meaning of instance variables
and class variables. You should do this because their uses are often far removed
from the comments describing them. Using longer names may help reduce the
need to look at the definitions, thus saving the reader some time (e.g. priceOf-
Pie). But be sure that defining comments appear near their declaration.

2. Do not use hugely long names because the longer the names, the longer and
more complicated the program appears to be. Do not try to encapsulate the whole
definition of an instance or class variable in its name.

Convention for naming constants (vars with modifiers static and final)

1. Use all capital letters, and use the underline character " _ " to separate words
within a name (e.g. NUMBER_OF_SIDES).

Activity
13-4

Activity
13-3

Activity
13-2

Activity
13-2.1

372 Chapter 13 Programming style

13.1.2 Conventions for naming methods

Conventions for naming procedures

1. A procedure name should consist of small letters, except that all “words” with-
in it (except the first) should be capitalized (e.g. printSmallest).

2. A procedure name can be a command to do something. That is, make it an
action phrase or verb phrase. For example, use drawLine, not lineDrawing or
drawsLine.

Here is the reason for this convention. A call on a procedure does some task;
it performs an action. Make the call read like a command to perform the task, e.g.

printSum(5, 95, 43)

3. A procedure name can be the name of an algorithm (e.g. quickSort).

Conventions for naming functions

1. A function name should consist of small letters, except that all “words” with-
in it (except the first) should be capitalized (e.g. indexOfMedian).

2. A function name can be a noun phrase that names the result (e.g. min(a,b)).
Here is the reason. A function produces a value, so let the function name be a
description of that value.

3. The name of a boolean function can be an abbreviation for the true-false state-
ment that is its specification. E.g. comesBefore(date1, date2) stands for the
result of “date1 comes before date2”.

4. A function name may be the name of the algorithm used to compute the result
(e.g. binarySearch).

13.1.3 Conventions for class names

1. Use a noun phrase for the name —a list of adjectives followed by a noun—
that describes an instance of the class. Capitalize each word in the noun phrase.
Examples: Date, GregorianCalendar, Checkbox, MenuItem.

2. If the class is generally not instantiated, perhaps because it consists mainly of
static methods, then do not use convention 1. An example of this is class Math.

3. Capitalize all words in the class name, including the first. Class names are case
sensitive. A class CheckboxMenu is stored in a file CheckboxMenu.java. Even
though your operating system does not use case sensitive names, (e.g. Microsoft
Windows and Macintosh OS 9), some operating systems do (e.g. Unix), so
always use the same capitalization in the file name that you do in the class name.
E.g. do not put a class CheckMenu in a file checkmenu.java.

Activity
13-7

Activity
13-6

13.2 Conventions for indentation

Indentation is used to help expose the structure of a program. A program that is
not well indented can be hard to read because its structure may not be apparent.
Watch ProgramLive’s activity 13-3.1 to see how hard it is to read a program that
is badly indented. Also, activity 12-3.2 discusses two issues to watch out for
when indenting.

Indentation conventions are based on two simple principles:

1. In a sequence of constructs —variable declarations, method definitions, state-
ments, and the like— all the constructs are indented the same amount.

2. If a Java construct requires more than one line, its subconstructs that appear
after the first line are indented.

Beyond these two principles, a few extra conventions are used to deal with
the use of braces { and } to aggregate statements into a single statement. There
are several ways to do this, and we comment briefly on them in the following
material.

In this text, we generally indent by four blanks at a time. Your IDE probably
has a preference panel where you can define how many spaces a tab indents.

13.2.1 Indenting if-statements

We put the opening brace of the then-part on the same line as the if-condition and
put the closing brace on a separate line, indented the same as the if:

if (...) {

System.out.println(x);

System.out.println(y);

}

This convention is used because placing the opening brace on a line by itself
takes another line, and the number of lines on the monitor is a scarce resource.

We (almost) always use a block for the then-part, even if it contains a single
statement. This convention prevents us from writing an if statement:

if (...)

System.out.println(x);

and then later adding another statement and assuming that it is part of the then-
part, which it is not:

if (...)

System.out.println(x);

System.out.println(y);

If the then-part is one line, we sometimes write it like this:

See lesson
page 13-3.

Activities
13-3.1..2

13.2 Conventions for indentation 373

374 Chapter 13 Programming style

if (...)

{ System.out.println(x); }

Conventions for indenting an if-else statement
Our convention is a simple extension of if-statement convention, e.g.:

if (...) {

System.out.println(x);

System.out.println(y);

} else {

System.out.println(z);

}

13.2.2 Indenting assertions

An assertion is a relation about variables that is enclosed in braces { and } and
written as a comment. It appears at the same level of indentation as the statement
that precedes or follow it. Its appearance in a program asserts that it is true when
execution reaches the position where it occurs. This is illustrated in the follow-
ing program segment, which has a precondition and a postcondition:

// { x = A and y = B (for some values A and B) }
int t= x;

x= y;

y= t;

// { x = B and y = A }

13.2.3 Indenting loops

Our conventions are similar to those for an if-statement:

// invariant: …
while (...) {

System.out.println(x);

System.out.println(y);

}

// invariant: …
for (i= 0; i != n; i= i + 1) {

System.out.print(i);

System.out.println(" " + (i * i));

}

Convention for loop invariants
A loop invariant is a relation whose truth is maintained by execution of the

repetend of the loop (under the condition that the loop invariant is initially true).

13.2 Conventions for indentation 375

Just about every loop in this text is accompanied by a loop invariant that helps
one understand the loop, and we encourage you to annotate your loops with
invariants as well.

As the example above shows, a loop invariant is written as a comment just
before the loop and is indented exactly the same amount as the loop. It has the
identifying prefix “invariant:” or “inv:”.

13.2.4 Indenting the body of a method

We place the opening brace of the body of a method after the header, we indent
the statements of the body 4 spaces, and we place the closing brace on a separate
line, beginning in the same column as the header of the method:

/** Print x, y, and z, titled, each on a separate line. */

public static void printxyz(int x, int y, int z) {

System.out.println("x = " + x);

System.out.println("y = " + y);

System.out.println("z = " + z);

}

Note that the specification of the method appears above the header, and the
specification and method begin in the same column.

13.2.5 Indenting components of a class

It is common practice to indent all fields and methods of a class 4 spaces, as
shown in Fig. 13.2. The opening brace { of the class body is on the same line as
the class name and the closing brace is in the same column as the first word of
the class definition.

public class Example {

public static final int PI= 3.1459;

private int field;

/** Constructor: an instance with field = f */
public Example(int f) {

field= f;

}

/** = a String representation of this instance */

public String toString() {

return " " + field;

}

}

Figure 13.2: Example of indentation of components of a class

13.3 Guidelines for writing methods

This section concerns writing methods so that they are most easily read, under-
stood, and used. Indentation within methods is covered in the previous section.
Comments on declarations of local variables is covered in the next section.

Figure 13.3 contains a complete method. Users of the method, however,
should look only at the specification of the method in order to see what the
method does, and at its header in order to see the result type and the types of the
parameters. This information is used when writing or reading calls to the method.
Here is the spec and header:

/** = smallest of b, c, and d */
public static int smallest (int b, int c, int d)

13.3.1 The specification as a contract

The specification is a contract between the author of a method and its users. The
author guarantees that the method does what the specification says —no more
and no less— and users rely on that guarantee. It is a logical firewall. On one
side is the method body, which only the author looks at; on the other are the calls
to the method, which only users look at.

Thus, the specification must be consistent with the method body. It must
explain precisely what the method does. If there is any discrepancy between
specification and body, the author has not done their job properly, and users are
forced to waste time trying to understand the method body.

Some think that a specification is not necessary, that one can tell what a
method does from the name and the parameters. But this is a dangerous and
error-prone practice because it is very difficult to pack a complete meaning into
a name. For example, even in the example of Fig. 13.3, without the specification,
some weird person might think that this method would:

Yield 1 if one of the parameters is smaller than the other two and
0 if there is no smallest.

One of the prime beneficiaries of a well-written specification is the method’s

376 Chapter 13 Programming style

/** = smallest of b, c, and d */
public static int smallest (int b, int c, int d) {

if (b <= c && b <= d)

{ return b; }

if (c <= d)

{ return c; }

return d;

}

Figure 13.3: An example of a method

author, provided they write the specification before writing the method body. The
act of writing the specification forces the author to be clear and precise; further-
more, the author can then refer to the specification when writing the body.

In conclusion, get in the habit of writing a clear and precise specification for
a method before writing the method, and maintain consistency between specifi-
cation and body.

The form of a specification
A specification of a method may be given in terms of a precondition and a

postcondition. The precondition defines what must be true of the arguments (and
any instance or class variables) when the method is called. The postcondition
defines what will be true of the arguments (and any instance or class variables
and, for a function, the result value) when the method call terminates.

Specification of a procedure
Since a procedure performs some task, write its specification as a command

to do that task. Here are two examples:

• Swap b, c, and d so that b ≤ c ≤ d.
• Print the square of the first n natural numbers.
• Deposit d dollars in bank account ba.

Specification of a function
A function produces a value. Therefore, write its spec as an English noun

phrase, mixed with math, which says what that value is. Here are examples:

• = minimum of b and c
• = square root of x, given x ≥ 0

We use = in the specification to say that the value of a call equals the value
that follows = (with parameters of the function replaced by arguments of the
call). Some use the word “return”, as in “return the minimum of b and c”. This
is all right but not preferred because it is too operational. The user wants to know
only what the value is that the function call provides, so just describe that value.

Specification of a constructor
The purpose of a constructor is to initialize (some of) the fields of a newly

created object of some class. Therefore, the specification of a constructor should
say simply what the initial values of all the fields are. If some of the fields are
given values that depend on the parameters of the constructor, the specification
must name the parameters and say how they are used to initialize the construc-
tor. Here is an example:

/** Constructor: an instance with amplitude a and frequency f */

public Wave(double a, double f)

13.3 Guidelines for writing methods 377

Javadoc specifications
A method specification or class specification that is commented using the

delimiters /** and */ (yes, the opening delimiter has two asterisks) is called a
Javadoc comment. The program Javadoc can be used to extract all Javadoc com-
ments from a program and put them in an html format so that one then has a
specification document. The Java API class specifications were extracted in this
fashion. Appendix II.2 discusses Javadoc, and Sec. 2.3 of Appendix I shows how
to create a Javadoc specification in DrJava.

13.3.2 Keeping body and spec consistent

Consider the method in Fig. 13.4. Part of the body is written in English. Assume
the code for this statement has been written; we just do not display it here:

As an example, a call to firstVowel with argument "peace" yields the
value 2 because the first vowel, "e" , is character number 2.

Suppose that, during development of the program for which this method was
itself developed, the programmer decides that it would be better for the method
to produce the index of the first vowel, which is 1, and not 2. So the program is
changed as shown in Fig. 13.5. But the programmer does not change the speci-
fication of the function. They are in a hurry to complete the program, and they
think that they will fix the specification later, after the program is working. So
the specification and body are now inconsistent.

A few weeks later, while continuing to develop the program, the program-
mer writes a call to this function:

vowelNumber= firstVowel(b);

Having forgotten that the specification and body are inconsistent, the program-
mer has used the specification in writing the call. Thus, if variable b contains

378 Chapter 13 Programming style

/** = no. of chars. in b up to and including the first vowel (b is known to contain a vowel) */

public static int firstVowel(String b) {

int r;

Store in r the index of the first vowel of b;
return r;

}

Program 13.5 Method firstVowel, with a modified body

/** = no. of chars. in b up to and including the first vowel (b is known to contain a vowel) */

public static int firstVowel(String b) {

int r;

Store in r the no. of characters in b up to and including the first vowel of b;
return r;

}
Program 13.4: Method firstVowel

"there is no longer peace", the programmer expects this statement to store
3 in vowelNumber. But it does not; it stores 2 . An error has been introduced into
the program.

Such scenarios happen too often in programming. They lead to a great deal
of lost time and cause immense frustration. There are at least two ways to guard
against them.

1. One way is not to use method specifications at all. But this wastes a great deal
of time because it forces the programmer to look at and understand the body of
a method whenever a call to the method is to be written.

2. A second way to guard against these kinds of scenarios is simply to keep
method specification and body consistent. This is a far better way to prevent
these kinds of errors. It is best done by changing the specification first and then
changing the body to fit it.

13.3.3 Using statement-comments

When reading or writing a program, we have many concerns, and we have to
focus our attention on one at a time. The more structure that is evident in a pro-
gram, the easier it is to separate our concerns and deal with one at a time.

A comment that acts as a statement —an instruction to do something—can
be useful in providing structure. We call such a comment a statement-comment.
The statement-comment says what to do; the code indented underneath it says
how to do it. (Later, we discuss indentation with respect to statement-comments.)

Using statement comments, Fig. 13.6 is viewed as a sequence of three state-
ments:

First statement;
// Permute x, y, z so that x <= y <= x

Second statement;

Activities 13-4.3
– 13-4.5 are easi-
er to understand!

Lesson
page 13-4

13.3 Guidelines for writing methods 379

First statement;

// Permute x, y, z so that x <= y <= x

// Swap the largest of x, y, z into z
if (x > z)

{ int tmp1= x; x= z; z= tmp1; }

if (y > z)

{ int tmp2= y; y= z; z= tmp2; }

// Swap the larger of x, y into y

if (x > y)

{ int tmp3= x; x= y; y= tmp3; }

Second statement;

Figure 13.6: Using statement-comments

Reading the program segment in this way, we get a first, abstract view of what it
does, and if this our concern at the moment, we need read no further. If our con-
cern is how the permutation of x, y, and z is done, we can read the indented code
underneath it, for the moment putting the first statement and second statement
out of our mind:

// Permute x, y, z so that x <= y <= x

// Swap the largest of x, y, z into z
// Swap the larger of x, y into y

Thus, the permutation is done in two steps. To see how the second statement is
implemented, read the indented code underneath it (see Fig. 13.6).

The use of statement-comments in this program provides us with three lev-
els of abstraction, allowing us to read the program in three different ways. We
can focus our attention on whatever concerns us at the moment.

Indentation guidelines for statement-comments and their implementations
Figure 13.6 illustrates one of our two ways of indenting statement-com-

ments and their implementation:

1. The statement-comment itself is indented the same amount as the other
statements in the sequence.

2. The implementation of a statement comment is indented four spaces
underneath it.

This method of indentation is preferred because it most clearly shows the struc-
ture of the program. However, the field has not adopted this method. Instead,
they generally use the following conventions, as illustrated in Fig. 13.7.

1. The statement-comment itself is indented the same amount as the other
statements in the sequence.

380 Chapter 13 Programming style

First statement;

// Permute x, y, z so that x <= y <= x

// Swap the largest of x, y, z into z
if (x > z)

{ int tmp1= x; x= z; z= tmp1; }

if (y > z)

{ int tmp2= y; y= z; z= tmp2; }

// Swap the larger of x, y into y
if (x > y)

{ int tmp3= x; x= y; y= tmp3; }

Second statement;

Figure 13.7: Alternative indentation for statement-comments

2. The implementation of a statement comment has the same level of inden-
tation and has a blank line after it.

When only two levels of abstraction are used —a statement-comment and its
implement, which contains no statement-comment— the second convention is
satisfactory. But if the implementation of a statement-comment itself contains a
statement-comment, the second convention simply does not work. In Fig. 13.7,
where does the implementation of the first swap statement-comment end? At the
first blank line underneath it. Then where does the implementation of the per-
mute statement-comment end? At the first blank underneath it? The structure of
the program is simply not evident from the indentation.

In this text, we tend to use the second alternative for indenting statement-
comments, even though it is inferior, simply because that is what the field does.
However, if the implementation of a statement-comment contains a statement-
comment, we resort to the first alternative to make the structure clear.

One final point. If statement-comments get several levels deep, it is time to
reorganize that piece of program, perhaps by writing a method or two, to remove
some of the levels.

13.4 Describing variables

It is difficult to understand statements that use variables unless one knows what
the variables mean. Typically, variables are described in comments that accom-
pany their declarations. Here, we discuss how to write these comments.

13.4 Describing variables 381

/** Instance: sale of a number of items at a price, e.g. 3 for $1.29 */

public class ItemSale {

private String name; // name of item being sold
private int groupCount; // groupCount items cost grpPrice cents
private int groupPrice;

private int numSold; // number of items sold
...

}

Figure 13.8 Some fields in class ItemSale

/** Instance: sale of a number of items at a price, e.g. 3 for $1.29 */

public class ItemSale {

// name is the name of the item being sold; groupCount of them cost groupPrice cents
private String name;

private int groupCount;

private int groupPrice;

private int numSold; // number sold

}

Figure 13.9 Placing field comments above their declarations

Describing instance variables and static variables
Figure 13.8 contains a class ItemSale whose instances contain information

of the sale of an item. For example, one instance might represent the sale of four
organic apples at a price of 3 for $1.19. We have shown only some the fields and
none of the methods in the class in order to make it easier to concentrate on the
issue at hand.

One might think that the names of these variables are self-explanatory and
that they might be made more explanatory by making them longer. Nevertheless,
the meaning of the variables will become much clearer with comments.

First, we describe name as the name of the item being sold. This distin-
guishes it, say, from the name of the salesperson.

Second, we describe groupCount and groupPrice together. This makes
sense because, together, they define the price of an item.

Third, we place the obvious comment on the declaration of numSold.
These comments clarify two points, which are not clear from the names of

the variables alone. They tell us precisely what name names, and they tell us that
the unit for groupPrice is cents, and not dollars or rubles or Euros or other mon-
etary units. This illustrates how comments can be more precise than names.

The term class invariant is generally used for the collection of descriptions
of all the instance and class variables. Together, these descriptions describe the
state of an object before and after each method of the class is called.

Cluster declarations by logical togetherness
We could have given these four declarations in some other order. However,

it is not a good idea to separate the declarations of groupCount and groupPrice
because, logically speaking, they belong together. Together, they describe the
price of the items. This illustrates an important principle:

Group logically related variables together and describe them with
one comment.

Formatting comments
We have aligned the comments that annotate these declarations. It is not nec-

essary to align them in this way, but it sure looks better and makes the comments
easier to read! So get in the habit of aligning comments suitably. The difficulty,
of course, is that if any change is made to the declarations, the alignment proba-
bly will not be proper. So some people will tell you, quite rightly, not to bother
with aligning the comments.

You can use an alternative form for the comments, as illustrated in Fig. 13.9:

Place the comments for a group of logically related variables
above the declarations and follow the last declaration by a blank
space.

Separate declarations of static variables from declarations of instance vari-

Activity
13-5.1

382 Chapter 13 Programming style

ables, for they generally serve a different purpose and do not have such a close
logical relationship.

Take care to write good explanations of fields, for they will help not only
other readers but you, as you develop the class.

Describing parameters
Each parameter of a method should be described in the specification of the

method, which appears just before the method as a comment. If a parameter is
not mentioned in the specification, the specification is incorrect.

Describing local variables
Local variables are declared in the body of a method. The principles and

conventions that hold for commenting instance variables hold for local variables
as well. However, local variables are used in a much smaller context than
instance variables. Because of this, not all local variables need defining com-
ments. If a local variable is declared and then used only in the next line or two,
it probably does not need a definition. If a local variable is used throughout the
method, especially in loops, it needs a defining comment.

Use your judgment when deciding whether to place a comment next to the
declaration of a local variable. Will you be able to easily understand the mean-
ing of the variable from its use five weeks later if there is no comment? If not,
annotate the declaration with an explanatory comment.

The placement of local-variable declarations
The information-hiding policy says to hide information that is not needed at

a particular point so that a reader is not encumbered with unnecessary detail. This
policy, in relation to local variables, says to:

Activity
13-5.2

Lesson
page 13-5

13.4 Describing variables 383

/** Permute w.x, w.y, w.z so that w.x <= w.y < w.z */

public static permute(Triple w) {

int tmp1;

int tmp2;

int tmp3;

// Swap the largest of w.x, w.y, w.z into w.z

if (w.x > w.z)

{ tmp1= w.x; w.x= w.z; w.z= tmp1; }

if (w.y > w.z)

{ tmp2= w.x; w.x= w.z; w.z= tmp2; }

// Swap the larger of w.x and w.y into w.y;

if (w.x. > w.y)

{ tmp3= w.x; w.x= w.y; w.y= tmp3; }

}
Figure 13.10 Putting local variables at the beginning of a method

Place a local-variable declaration as close as possible to the first
use of the variable.

To illustrate this convention, consider the method in Fig. 13.10, which uses
this class Triple:

public class Triple {

int x; int y; int z;

}

Method permute permutes the components of its parameter w so that they are in
a particular order. It uses three local variables, which are declared at the begin-
ning of the method. The reader is forced to look at these variables even though
they may be of no interest. For example, the reader may be satisfied with look-
ing just at the two statement-comments. The placement of these local variables
cries out for explanatory comments for them.

In Fig. 13.11, the declarations of these variables have been placed as close
to their first use as possible. Now, the reader has to read them only when look-
ing at the implement of the statement comments. Further, their use is obvious,
and no comment is needed.

There may be valid reasons for placing a declaration of a local variable at
the beginning of the method body. Here is one. Suppose we replace all three vari-
ables by a single local variable tmp and use tmp to make all three swaps. Variable
tmp would be declared at the beginning of the method, perhaps like this:

int tmp; // Used in swapping variables

384 Chapter 13 Programming style

/** Permute w.x, w.y, w.z so that w.x <= w.y < w.z */

public static permute(Triple w) {

// Swap the largest of w.x, w.y, w.z into w.z

if (w.x > w.z)

{ int tmp1= w.x; w.x= w.z; w.z= tmp1; }

if (w.y > w.z)

{ int tmp2= w.x; w.x= w.z; w.z= tmp2; }

// Swap the larger of w.x and w.y into w.y;

if (w.x. > w.y)

{ int tmp3= w.x; w.x= w.y; w.y= tmp3; }

}

Figure 13.11 Putting local variables close to their use

Chapter 14

Testing and Debugging

OBJECTIVES

INTRODUCTION

A bug is an error in a program. There are (at least) three kinds of bugs:

1. A function may not return the right value.
2. A method may incorrectly change data (for example, the values of static

or instance variables, or information in a file).
3. A method may throw an exception (the bottom of the page discusses

exceptions).

Testing is the process of analyzing and executing a program to determine
whether it has bugs. A test case is a set of inputs, together with the expected out-
put, that is used to test a section of a program, and a test is code that exercises a
test case.

Debugging is the process of locating a bug and removing it.
The strategies and hints provided in this chapter will help reduce your over-

all work. At first, it will feel like you are doing more work, but after you follow
these steps for several assignments, your productivity will increase, possibly dra-
matically.

• Learn strategies for thoroughly testing programs.

• See some tips for debugging programs.

What is an exception? When an abnormal event occurs, like division by 0 or an attempt to ref-
erence a field of a non-existent object (e.g. null.x) occurs, Java throws an
exception, where an exception is an instance of class Throwable. Often, this
results in the display of an error message and termination of the program.
Section 10.1 explains the content of these errors messages, and the rest of Chap.
10 explains all the details of handling such exceptions.

386 Chapter 14 Testing and debugging

Testing can be fun. To paraphrase a former student of the younger author,
testing is a Good Thing because you approach it with a different mentality than
when writing code. When writing code, you are just trying to get it done; when
testing code, you are trying to “break it”, you are trying your best to make it work
improperly.

14.1 An introduction to testing

We begin with a discussion of testing methods since the method is generally the
smallest testable unit of a program. Later, we make a few remarks about testing
a class.

First, we always try to follow this guideline:

Guideline: Test each method thoroughly as it is completed.

Of course, this may not always be feasible because several methods may inter-
act in such a way that testing them together is necessary.

But there is a good reason for this guideline. Once a method is tested and its
correctness is assured (as much as possible), you will be quite sure that any error
that arises is not in that method. It lies elsewhere. This reduces, to a large extent,
the areas of the program to be investigated when developing test cases, testing,
and debugging.

The tendency, once a method is written (but not tested), is to move on to the
next one. Following this tendency will assuredly end up costing you more time
in developing and testing the program. Resist the tendency.

A second guideline is the following:

Guideline: When both writing and testing a method, understand
exactly what the method is supposed to do —this means that the
method specification should be written before the method body.

Software quality teams. Because of the high cost of leaving bugs in a program, some compa-
nies have quality assurance (QA) teams that do nothing but test software. A
team is given the specification and software, and the software is not released
until this team okays it. Even then, software is sold with bugs. The best way to
ensure there are no bugs is not to put them there in the first place. That, of
course, is hard to do.

Do better testing! The longer bugs remain in a program, the more costly it is to remove them.
This old adage has been supported by many studies, e.g. the U.S. National
Institute of Standards and Technology (NIST) study in 2002. Software bugs, the
study said, cost the U.S. economy about $59.5 billion a year. Further, over half
the bugs in software were found late in the development process or even after
the software was selling on the market. The cost could be cut by some $22 mil-
lion by better testing at early stages of development.

It is impossible to test a method that is not well specified. You can read the
method body, but how do you know that it does what it is supposed to do? The
first job of a tester who encounters such a method is to find the person who wrote
the method, find out what it is supposed to do, and then clarify the documenta-
tion. Really, they have no other choice.

We assume throughout, then, that methods and classes are well specified.

14.1.1 Five maxims for creating test cases

There are two steps in testing a program: (1) test cases have to be generated; (2)
the program has to be tested with the test cases. The following maxims will guide
you not only in generating test cases and testing but also in programming itself.
Their application will help you write good comments for methods and variables.

Maxim 1. Test early and often.

The sooner you test a method, the sooner you will find and fix bugs. In fact,
as soon as you have written a method specification, you should write an
example of a call to that method. This means that you will be thinking about
how the method might be used even before you write the method body. (And
it will help you write better documentation.)

Maxim 2. Test only one thing at a time.

If you test several things at once and the test fails, you will have a harder
time figuring out why. Also, when testing several things at once, it is easier
to lose track of what you are testing and harder to make sure that you have
covered all the cases.

Maxim 3. Test 0, 1, and many.

This maxim can be applied to the size of both the input and the result. Many
usually means 2 or 3, although 5 or 10 is not unreasonable, depending on
what is being tested. Why 0? Well, for example, when implementing code
involving a list of items, it is easy to forget that the list might be empty (has
0 items). Why 1? It is the smallest “typical” case. If a bug is detected with
size 1, it is usually easier to debug that case than on a longer list.

Maxim 4. Test null, beginning, middle, and end.

When implementing a method, it is easy to overlook what might happen if a
parameter is null. Test at the beginning and end of the input because it is
easy to forget about the two extremes while writing code. Test in the middle
because it is the “regular” case.

14.1 An introduction to testing 387

Maxims and aphorisms. A maxim is a general truth, fundamental principal, or rule of conduct.
A synonym of maxim is aphorism, which is a concise statement of a principle
or a terse formulation of a truth or sentiment.

Maxim 5. Verify the documentation.

As you test, ask yourself questions that you would not normally think of
while writing the code. Make sure the documentation answers those ques-
tions. (These are called design decisions.)

14.1.2 Example of creating test cases

Consider this method header and comment:

/** = the number of vowels in s */
public static int numberOfVowels(String s) {

return -1;

}

We have written the method body with a return statement so that the method
will compile. Such a method body, which does not do the right thing but is writ-
ten simply to allow the program to compile, is sometimes called a stub. After
compiling, we will begin writing the method body, but first we use the five max-
ims to generate test cases. Yes, we are going to generate the test cases before
writing the method! At the end, we show you how to put them together into a
method that you can use to easily test the method whenever you want.

Maxim 1. Test early and often. To test early, we need a test case. Below, we
show a test case, which consists of a typical call to numberOfVowels and the
answer we expect from it:

numberOfVowels("This sentence has vowels."), 7

Maxim 2. Test only one thing at a time. Remember the three possible kinds of
bugs: incorrect value, incorrect change of data, and exception. Here, because
there is no outside data to corrupt, we focus on the first: the method may return
a wrong value. Later, as you test more complicated code, you might have sever-
al methods in a class. You will need to test how the methods interact, and this
maxim can be used to figure out how complicated to make your testing.

388 Chapter 14 Testing and debugging

Using a try-statement. If you have not yet studied try-statements, skip this note. Below is an
advanced test that uses a try-statement to test for a null argument.

try {

numberOfVowels(null);

// If this point is reached there is a problem
System.out.println("Whoops, expected an exception.");

} catch (NullPointerException e) {

// If this point is reached, the method worked correctly,
// so this block is empty

}

Maxim 3. Test 0, 1, and many. Because we are testing vowels, we decide to use
5 for “many” —one for each vowel. In other situations it might be the number of
items in a list, or the number of lines in a file, etc. Using this maxim, we gener-
ate the following tests cases:

numberOfVowels(""), 0 (the empty string)
numberOfVowels("bcd"), 0 (zero vowels, many letters)
numberOfVowels("a"), 1 (one vowel, one letter)
numberOfVowels("bad"), 1 (one vowel, many letters)
numberOfVowels("aeiou"), 5 all vowels, many letters)
numberOfVowels("facetious"), 5 (typical case)

There is another way to think of “many”: many occurrences of the same
vowel. When dealing with the first maxim, we wrote a test that had three e’s.

Maxim 4. Test null, beginning, middle, and end. Beginning and end are cov-
ered in the penultimate test from the previous maxim. Middle? Yes, in several of
the cases, the vowels occur in the middle of the argument. There is one item left:
the parameter might be null. This interacts with the next maxim, and we discuss
it there.

Maxim 5. Verify the documentation. In investigating the previous maxim, we
found a problem with the documentation: it does not state what the result of the
call numberOfVowels(null) should be. Should the method return 0? Or throw
an Exception? Whatever decision is made, the method specification needs to be
improved. Here we decide to disallow null and to let the code throw an excep-
tion: We add a second sentence to the method description to document this case:

/** = the number of vowels in s.
Throw a NullPointerException if s is null. */

public static int numberOfVowels(String s) {

return -1;

}

[It would be more appropriate to throw an IllegalArgumentException, but this
requires knowledge of the try-statement or throw-statement. See Sec. 10.4.1)

The test case in this case is the following:

numberOfVowels(null), an exception

Now here is something really neat: after spending 5-10 minutes writing test
cases, we have a thorough understanding of how the method behaves and have
improved the method specification, before we have written a single line of code.

14.1.3 A test driver

Remember the second maxim: test early and often. When testing a method, this
means that the method should be tested against all test cases when the method is

14.1 An introduction to testing 389

first written and then tested against all test cases whenever the method is
changed. Because testing is done frequently, the output from testing must be easy
to read. In fact, it is typical to print information only when a test case fails, so
that there is something to read only if there is a bug.

In Sec. 14.1.2, we created several test cases. Figure 14.1 contains a proce-
dure that exercises each test case. Such a method is often called a test driver.

It is assumed that this procedure is placed in the same class as function
numberOfVowels. Each test case (except the last) is wrapped in an if-statement,
which compares the expected answer with the answer given by the function.
Notice how we test whether the result is not what we expect. The last test case is
exercised using a call with argument null. Execution of this call should cause an
exception and abortion of execution.

14.1.4 Testing using JUnit

DrJava comes with a testing tool, JUnit, as do many IDEs. JUnit is the most com-
mon Java testing tool. The mechanics of using JUnit are explained in Sec. 2.4 of
Appendix I. Here, we show the use of JUnit to perform the tests described in Sec.
14.1.2.

Figure 14.2 contains the same test cases as Fig. 14.1, this time to be tested
using JUnit. Thus, a class extends class TestCase. The class contains a public

390 Chapter 14 Testing and debugging

/** Execute some tests */

public static void testNumberOfVowels() {

if (7 != numberOfVowels("This sentence has vowels."))
{ System.out.println("A general test failed"); }

if (0 != numberOfVowels(""))

{ System.out.println("Empty case failed"); }

if (0 != numberOfVowels("bcd"))

{ System.out.println("A case without vowels failed"); }

if (1 != numberOfVowels("a"))

{ System.out.println("A case with one letter, a vowel, failed"); }

if (1 != numberOfVowels("bad"))

{ System.out.println("A case with mixture of vowels & letters failed"); }

if (5 != numberOfVowels("aeiou"))

{ System.out.println("A case with all vowels failed"); }

if (5 != numberOfVowels("facetious"))

{ System.out.println("A typical case failed"); }

numberOfVowels(null);

}

Figure 14.1: A method for testing function numberOfVowels

procedure named test... with no parameters for each test case, and the body of
each procedure contains one call to a method of class TestCase. We have writ-
ten independent methods for the test cases because the test cases are independ-
ent —one does not depend on another one working correctly.

This is one context where we do not write method specifications. Here, the
context is so specific, the bodies of the methods so simple, and the names of the
methods so descriptive that writing a specification for the methods would add lit-
tle. In this context, we know implicitly what each procedure does: it exercises a
test case.

14.1.5 Testing a class

Testing a class is harder than testing a method, for a class generally contains
many methods. The test driver should:

1. Declare at least one and perhaps more variables with the class as their
type.

2. Create instances of the class and assign them to the variables.

14.1 An introduction to testing 391

import junit.framework.TestCase;

public class TestNumberOfVowels extends TestCase {

public void testDuplicateVowels()

{ assertEquals(7, numberOfVowels("This sentence has vowels.")); }

public void testEmpty()

{ assertEquals(0, numberOfVowels("")); }

public void testNoVowels()

{ assertEquals(0, numberOfVowels("bcd")); }

public void testOneVowel()

{ assertEquals(1, numberOfVowels("a")); }

public void testOneVowelSeveralLetters()

{ assertEquals(1, numberOfVowels("bad")); }

public void testEveryVowelNoConsonants()

{ assertEquals(5, numberOfVowels("aeiou")); }

public void testEveryVowelSeveralConsonants()

{ assertEquals(5, numberOfVowels("facetious")); }

public void testNull()

{ assertEquals(0, numberOfVowels(null)); }

}

Figure 14.2: An instance of TestCase to test TestNumberOfVowels

3. Check that the constructor of the class works properly. This means check-
ing whether the fields of each new instance were properly initialized.
Function toString can be useful in testing. If toString has been writ-
ten, it is easy to print the contents of a class instance using it:

System.out.println(x.toString());

This test will also help test method toString.

4. Test all the other methods. This testing can follow the pattern described
earlier.

When creating a subclass of TestCases to use with JUnit, a procedure
setup (see Sec. 2.4 of Appendix I) can be written that creates instances of the
class being tested and stores them (i.e. their names) in fields of the subclass.
These fields can then be used in the test procedures of the subclass.

14.2 Approaches to creating test cases

In Sec. 14.1, we developed test cases for a method by looking only at the speci-
fication of the method —even before the method body was written. This kind of
test-case development is known as blackbox, or functional, testing. There are
other ways to go about developing test cases. We list three main ones here.

1. Exhaustive testing. Exhaustive testing, or testing a program on all possi-
ble inputs, sounds good but is generally infeasible for most programs

392 Chapter 14 Testing and debugging

/** = name of 10 * n, for 2 ≤ n < 10, e.g. tensName(3) is "thirty"*/
public static String tensName(int n) {

if (n == 2)

{ return "twenty "; }

if (n == 3)

{ return "thirty "; }

if (n == 4)

{ return "fourty "; }

if (n == 5)

{ return "fifty "; }

if (n == 6)

{ return "sixty "; }

if (n == 7)

{ return "seventy "; }

if (n == 8)

{ return "eighty "; }

return "ninety ";

}

Figure 14.3: Function tensName, with an error

because of the number of possible test cases. Even if a method has only
one int parameter, exhaustive testing would require calling the method
well over four billion times, and the output of each call would have to be
checked for correctness.

2. Blackbox testing, or functional testing. In making up test cases, one
looks only at the specification of the program (and not the program itself)
in deciding what test cases to try. The program is a black box, and you
cannot see inside it.

3. Whitebox testing, or structural testing. One looks at the program itself
when developing test cases and uses the structure of the program to rec-
ognize possible trouble spots and develop test cases to exercise them.

The term whitebox testing was badly chosen. Just because a box is
white does not mean you can see through it. A better term would have
been glassbox testing or transparent box testing.

In the rest of this section, we discuss structural testing as a complement to
functional testing. We review maxim 3:

Lesson page 14-3
has a discussion
of blackbox test-
ing and an inter-
esting anecdote
about doing it in
industry.

14.2 Approaches to developing test cases 393

/** = English equivalent of n, for 0 < n < 1000 */
public static String anglicize(int n) {

String s= " " ; // anglicize(n) = s + anglicize(k)

int k= n;

if (k >= 100) {

s= s + digitName(k / 100) + "hundred ";

k= k % 100;

}

if (k >= 20) {

s= s + tensName(k / 10);

k= k % 10;

}

if (k > 10) {

s= s + teenName(k);

k= 0;

}

if (k > 0) {

s= s + digitName(k);

k= 0;

}

return s;

}

Figure 14.4: Method anglicize, to be tested (it contains an error)

Maxim 3. Test 0, 1, and many

When thinking about testing a loop, we interpret maxim 3 to mean that we
should provide test cases in which a loop will execute 0 iterations, 1 iteration, and
more than 1 iteration. If a program deals with an array or list of some sort, we
should consider test cases for which the array (or list) has 0 elements, 1 element,
and many elements.

Structural testing involves one new, extremely important, maxim:

Maxim 6. Develop test cases that provide test coverage.

A group of test cases provides test coverage if exercising them will cause
every single part of the program to be executed at least once. When developing
test cases using the functional approach, we cannot look at the method body, so
there is no way to know whether complete test coverage has been achieved. So,
maxim 6 is an important addition.

Here is an example that actually happened to one of us. We wrote the func-
tion of Fig. 14.3. This method is so simple that we thought we might skip testing
it. But we tested it anyway, thoroughly, trying as test cases the arguments 2
through 9. All these test cases were necessary because we had to make sure that
each return statement was executed at least once. It was only when looking at the
output of the testing phase that we noticed the typo: we had misspelled forty.

As another example of test coverage, look at the function in Fig. 14.4. To
provide test coverage, the then-part of each if-statement has to be executed. So,
we look at calls of method anglicize with arguments (say) 125, 50, 15, and 5.

14.3 Approaches to testing

In Secs. 14.1.3 and 14.1.4, we introduced two approaches to exercising test
cases: the use of a test driver, which is a method that is written to perform the
tests, and the use of JUnit, an application that has been written to facilitate test-
ing. There are other ways to exercise test cases, some of which we explore here.

Use DrJava’s Interactions pane
In some cases, it is sufficient to test a method (as soon as it is written) using

DrJava’s Interactions pane. Suppose the method is static. Then you can write
many calls on it in the Interactions pane and see the answer immediately.

The advantage of using the Interactions pane is that it can be done quickly
and without the overhead of writing a test driver or writing a subclass of class
TestCases (in order to use JUnit).

The disadvantage of using the Interactions pane is that it is not easily repeat-
able. If we make a change in the method and want to test it again, we must man-
ually type in the calls to the method and check the answers. Using a test driver
or JUnit takes more time in the beginning, but, in the end, it saves time because
the same tests can be repeated whenever we want.

394 Chapter 14 Testing and debugging

Use GUI JLiveWindow as a test driver
As mentioned earlier, a test driver is a program that has been written to test

execution of another program (or program unit) on some test cases. GUI
JLiveWindow can be used as a test driver in some cases. This may be easier than
using DrJava’s Interactions pane, but it has the same disadvantage: one must
manually type in the test cases.

We provide an example of the use of GUI JLiveWindow. Suppose we have
written a class that contains static methods to convert among three different tem-
perature scales: Fahrenheit, Centigrade, and Kelvin, e.g.

/** Conversions to and from Fahrenheit, Centigrade, Kelvin */

public class TempConvert {

/** = Fahrenheit equivalent of Centigrade temp c */

public static double FahrFromCent(double c)

{ return 9 * c / 5 + 32; }

...

}

Our GUI test driver consists of two classes, JLiveWindow and MyJLive-
Window. It works as follows. When you start the test driver, the GUI window will
appear on your monitor. You can type a value in the first double field and press
button Ready. The driver will use the value as the argument to method
FahrFromCent and put the result in the second double field. It will also put text
in the String fields of the GUI to label the values. You can run many test cases
during one execution of the program.

Class JLiveWindow is changed in two ways to make it into our test driver.
First, the call to the constructor in method main is changed to have the arguments
0, 2, and 2, so that the GUI has 0 int fields, 2 double fields, and 2 String fields.

Second, method buttonPressed, which is called when button Ready of the
GUI is pressed, is changed to do the following:

1. Copy the value in the first double field into variable b.
2. Place the title for the first double field into the first String field.
3. Place the value of the call FahrFromCent(b) in the second double field.
4. Place the title for the second double field into the second String field.
5. Return the value null.

Figure 14.5 contains this method buttonPressed.
You can use GUI JLiveWindow as a test driver for many methods. You have

control over the number of int, double, and String fields in the GUI, and you
can change method buttonPressed to suit your needs.

14.4 The Java assert statement

Throughout this text, we have annotated programs with comments that contained

Activity 1-5.3
gives a thor-
ough introduc-
tion to GUI
JLiveWindow.

14.2 Approaches to developing test cases 395

assertions. Examples are preconditions of methods, postconditions of methods,
class invariants, and loop invariants. Java 1.4 has a new statement, the assert
statement, which comes in one of two forms:

assert boolean-expression ;

assert boolean-expression : expression ;

This statement is executed as follows. The boolean-expression is evaluated;
if it is true, execution of the statement is finished. If it is false, an Assertion-
Error is thrown, which (for the first form above) prints the following message
and terminates the program:

java.lang.AssertionError:

at Funcs.testPrint(Funcs.java:28)

For the second form, the value of the expression is printed as well —it is the
detail message of the thrown AssertionError. For example, if this value is
"hey, it is 5", then this is printed:

java.lang.AssertionError: hey, it is 5

at Funcs.testPrint(Funcs.java:28)

The assert statement, inserted at judiciously chosen places, can alert you to
misguided beliefs and therefore help you debug your program. For example, sup-
pose you previously wrote the following code:

396 Chapter 14 Testing and debugging

Making the assert statement work. The assert statement may not work in your system. Some
IDEs have a switch that tells whether the assert statement should be allowed.
For example, if your version of DrJava does not allow the assert statement,
select menu edit item preferences. In the window that opens, click category
Miscellaneous in the lefthand column and then check the box Allow assert key-
word in Java 1.4.

If you are using a command-line window to compile a Java program, then
you need the -source 1.4 option to enable assertions, as shown below. This is
needed for backward compatibility reasons.

javac -source 1.4 SomeClass.java

/** Put into double field 1 the fahrenheit value for centigrade value in double field 0 */

public Object buttonPressed() {

double b= getDoubleField(0);

setStringField(0, "Centigrade");

setDoubleField(1, TempConvert.FahrFromCent(b));

setStringField(1, "Fahrenheit");

return null;

}

Figure 14.5: Method buttonPressed used to test function FahrFromCent

if (x % 2 == 0) {

...

} else { // { x % 2 == 1 }

...

You can now write this code this way:

if (x % 2 == 0) {

...

} else {

assert x % 2 == 1: "x= " + x;
...

If, for some reason, the assertion of the assert statement (the boolean-expres-
sion) should ever be false at that point during execution, the program will abort
with a message, and you will know that there is a problem.

The assertion statement is intended to be used for internal checking of a pro-
gram while a program is being developed. You are encouraged to leave assertions
in a program when it is completed just in case all bugs have not been found and
corrected. But assertions are not intended to be used to alert a user of a program
to errors they have made. For such problems, the normal error-handling mecha-
nisms should be used.

For example, suppose we are writing a private method, called only by our
own methods, that has a precondition 0 < n < 100. We can use an assert statement
to check the precondition, as shown here:

/** = English equivalent of n, for 0 < n < 100 */

private static String anglicize(int n) {

assert 0 < n && n < 100: "n is " + n;

...

However, if the method is public and you have no control over the places
from which it is called, it is better to throw the appropriate exception:

/** = English equivalent of n, for 0 < n < 100

Throw an IllegalArgumentException if n out of range */

private static String anglicize(int n) {

if (0 >= n || n >= 100)

{ throw new IllegalArgumentException("n is: " + n); }

...

Throw statements are discussed in Chap. 10 on Exception handling. Do not
be concerned if you do not know about exceptions; if you want to test a parame-
ter's precondition, just use the throw statement shown above, putting as the argu-
ment of the constructor of IllegalArgumentException a string that explains
the problem.

Generally, you can use the assert statement to test loop invariants, postcon-
ditions of methods, and other assertions that you previously wrote as comments.

14.4 The Java assert statement 397

Evaluating the boolean expression of the assert statement does take time.
Use it for simple tests, like the ones shown. But do not include in the boolean
expression a call to a function that processes every element of a large array
unless it is a temporary measure.

14.5 Debugging

Suppose a test case has detected a bug. It is now time to find the bug. This can
be a time-consuming, difficult task, like finding a needle in a haystack.

There are two ways to proceed. First, one can use a debugger —your IDE
probably has one. Second, one can sprinkle the program with print statements
and assert statements that help you track down the error.

The use of a debugger can make the task easier because it has tools that help
you analyze the program. You can step through execution of the program one
statement at a time, you can look at the values of variables and expressions as
execution proceeds, you can see what methods have been called, and so on.

But if a debugger is not available, or you do not know how to use it, you
must resort to sprinkling the program with print and assert statements. We
describe this process here.

Tracking down a bug
Suppose we are testing a program that includes the method of Fig. 14.4. In

one place "nine hundred nine " is printed on the Java console, and we can tell it
is wrong. We have to debug the program.

The bug might be either in a calculation or in a method that tranforms an
integer to its English equivalent, like anglicize. We decide to test method
anglicize. The first order of business is to:

Debugging maxim 1. Place print statements at the beginning and
end of the method (to check whether its precondition is met and
to check whether the value returned is correct).

In our case, the two statements to insert are:

System.out.println(" Start anglicize, n = " + n);

System.out.println(" End anglicize, ans = " + s);

398 Chapter 14 Testing and debugging

/** = name of n, for 10 <= n <= 19 */

public static String teenName(int n)

/** = name of 10*n, for 2 <= n <= 9 */

public static String tensName(int n)

/** = name of n, for 0 < n < 10, or "" if n = 0 */
public static String digitName(int n)

Figure 14.6: Specifications of some methods used in anglicizing

When we run the test case again, we see that method anglicize was called
with n = 1210, and the result was wrong. Here is the output:

Start anglicize, n = 1210

End anglicize, ans = nine hundred nine

A look at the precondition of anglicize tells us that anglicize was called
incorrectly because 1210 is not in the range for which it was written. Therefore,
we will have to look for the error at the place where this call was made.

We do not pursue this particular error further. Instead, we look closer at
method anglicize itself.

Tracking down another bug
It takes time to insert and remove print statements and to run tests in order

to detect bugs. Therefore, we try to follow this maxim:

Debugging maxim 2. Glean as much information as possible
from each exercise of test cases.

In the case discussed above, it does not appear that calling anglicize with n
= 1210 should produce the result that it did. After all, the then-part of the first if-
statement will set k to 10 , so where did the "nine" come from in the answer?

If we do not see the error, we:

Debugging maxim 3. Insert print statements at judiciously cho-
sen places, in order to check values of variables.

In this case, we place the same print statement after each if-statement:

System.out.println("s = " + s + " , k = " + k);

And we execute the program again (with the same input, of course). Here is the
output from that execution:

Start anglicize, n = 1210

s= nine hundred, k= 10

s= nine hundred, k= 10

s= nine hundred, k= 10

s= nine hundred nine, k= 0

End anglicize, ans= nine hundred nine

The output of the first four print statements is reasonable. But the output of
the fifth print statement is not. Why did the call to digitName produce " nine"
when its argument was 10? To find this out, we have to look at the specifications
of the methods being called (see Fig. 4.6).

A look at the specification of digitName reveals that that method requires
its argument to be less than 10, so it is our mistake to call digitName with 10 as
the argument. But then where is the integer 10 handled?

We back up to the previous if-statement and take a look at the specification

14.5 Debugging 399

of method teenName. We find out that it handles arguments in the range 10..19
—even though 10 is not really a teen. Here is where reliance on the name of a
method for its meaning is a mistake!

So we should be able to fix the error by changing the if-statement to the fol-
lowing one:

if (k >= 10) {

s= s + teenName(k);

k= 0;

}

Running again, with the same input, we see that the error has been fixed.

Discussion
The main goal of this section is to illustrate the debugging process. But it

teaches another lesson:

Debugging maxim 4. Deal carefully with interfaces.

The specification of a method is the interface between the method and calls
to it. The bugs uncovered in this section were interface bugs: methods were
called with unsuitable arguments.

Interfaces are always a problem. When building a house, baseboard molding
is used where the floor meets the walls to hide the cracks, and quarter-round
molding is often placed on the baseboard molding for the same reason. Plumbing
interfaces are a huge source of wet trouble spots. Roofs leak mostly where the
roof meets a chimney; the interface between these two quite different materials
is hard to get right.

So be extremely careful with interfaces!

14.6 Key concepts

• The cost of testing. Testing consumes far more time than most people imag-
ine. To reduce the time, follow good programming practices.

• Test case. A test case is a set of input values that are used in testing a program
unit (method, class, etc.) together with the expected result. Good testing requires
developing a suitable set of test cases. Some people will tell you to develop test
cases before writing the program!

• Exhaustive testing. Such testing requires testing with every possible test case.
Generally, it is infeasible.

• Blackbox or functional testing. Such testing requires developing test cases
using only the program specification; the program and its structure is not looked
at.

400 Chapter 14 Testing and debugging

• Whitebox or structural testing. Such testing requires developing test cases
while looking at the program itself. Enough test cases should be included so that
test coverage is provided: every statement is executed at least once during test-
ing. Also, test cases should be developed to look at boundary conditions (e.g.
execution of a loop that performs 0 iterations, 1 iteration, or the maximum num-
ber of iterations).

• Suites of test cases. For a larger program, develop a suite of test cases and test
them all whenever changes are made. If possible, write the test driver so that it
does the testing automatically and prints out messages only when the answers are
unexpected.

• Debugging. Debugging is the process of finding and removing errors once they
have been detected. When looking for an error, use Java assert statements, judi-
ciously placed print statements, and perhaps the debugging tool of your IDE to
help you track down the errors.

14.6 Key concepts 401

Chapter 15

Recursion

OBJECTIVES

INTRODUCTION

A recursive definition is a definition that defines something in terms of itself. For
example, a noun phrase could be defined as either a noun or an adjective fol-
lowed by a noun phrase. Mathematics is rampant with recursive definitions be-
cause using recursion is often the easiest way to define something.

Recursion is a powerful tool in programming. For some tasks, using recur-
sive methods is much easier than using loops. In fact, there are functional pro-
gramming languages that rely completely on recursion and do not have loops.

In this chapter, we study recursion and show how useful it is.

15.1 The recursive pattern

15.1.1 A simple recursive definition

A noun phrase is a series of adjectives (possibly empty) followed by a noun.
Since dog is a noun, dog is also a noun phrase —here, the series of adjectives is
empty. Since the, big, and brown are adjectives, the big brown dog is also a noun
phrase.

Activity
15-1.1

• Learn what recursion means and see how it applies to methods.
• Learn the two perspectives on recursive calls: how to execute them and

how to understand them.
• Study some interesting recursive methods.
• Learn about object recursion.
• Develop a skill in writing recursive methods.

In order to eliminate the phrase “series of” from this definition, we give a
two-part recursive definition. A noun phrase is either:

1. a noun
or

2. an adjective followed by a noun phrase.

We use this definition to construct noun phrases. Since dog is a noun, part 1
of the definition tells us that dog is a noun phrase. Since loud is an adjective, part
2 then tells us that loud dog is a noun phrase. Since big is an adjective, part 2 tells
us that big loud dog is a noun phrase.

The definition of noun phrase is recursive because it is defined in terms of
itself: part 2 of the definition uses noun phrase to help define noun phrase.

Such recursive definitions occur often throughout mathematics and fields
that use mathematics —for example, linguistics, which attempts (among other
things) to define grammars for natural languages like English.

15.1.2 A recursive procedure

We develop a procedure that sets the elements in a segment of an array to 0:

/** Set elements of b[h..k] to 0. Precondition: h <= k + 1*/

public static void setToZero(int[] b, int h, int k)

In writing the method body, we consider two cases: the segment is empty and it
is not empty. If the segment is empty, there are no elements to be set to 0, so the
method body can be terminated using a return statement. Second, if b[h..k] is
nonempty, then first element, b[h], can be set to 0. Thereafter, the rest of the ele-
ments of the segment have to be set to 0. We indicate this in the method body
with an English statement. The body, shown below, is correct, except that it con-
tains an English statement.

if (h == k + 1)

{ return; }

// { b[h..k] is nonempty }

b[h]= 0;

Set elements of b[h + 1..k] to 0 // English statement

We implement the English statement. It has the same form as the procedure
spec, except that it has expression h + 1 instead of parameter h. Therefore, the
English statement can be implemented by a recursive call to this method:

setToZero(b, h + 1, k);

It is called a recursive call because it appears in the body of the method that it is
calling. The final procedure is in Fig. 15.1.

See lesson
page 15.1 to
get the proce-
dure from the
CD.

Activity
15-1.2

404 Chapter 15 Recursion

Discussion of the recursive pattern
The body of the method consists of two cases:

• The base case consists of parameter values in which the task to be done
can be carried out simply, with no recursive calls. Segment b[h..h-1] is
empty —there are no elements to set to 0. The body simply returns.

• The recursive case consists of parameter values for which a recursive call
is made. One step is made —set one array element to 0. Then a recursive
call is made to perform the rest of the task.

The recursive call was developed using the technique for developing method
calls taught in Sec. 2.2.2. The only difference is that the call is on the method in
which the call occurs.

Comments on the code in Fig. 15.1
The procedure body of Fig. 15.1 is so short and simple that the comments

are not needed, so we eliminate them:

/** Set elements of b[h..k] to 0 */
public static void setToZero(int[] b, int h, int k) {

if (h == k + 1)

{ return; }

b[h]= 0;

setToZero(b, h + 1, k);

}

We can write this method body so that a return statement is not needed:

if (h <= k) {

b[h]= 0;

setToZero(b, h + 1, k);

}

However, we prefer the original body. It handles the base case first, returning as
soon as it is handled. The rest of the body need not deal with it. We generally
write recursive methods in the form used in Fig. 15.1.

15.1 The recursive pattern 405

/** Set elements of b[h..k] to 0. Precondition: h <= k + 1*/

public static void setToZero(int[] b, int h, int k) {

if (h == k + 1)

{ return; }

// { b[h..k] is nonempty }

b[h]= 0;

setToZero(b, h + 1, k);

}

Figure 15.1: Recursive procedure setToZero

15.1.3 A recursive function

We develop a function to return its String parameter but with blanks removed:

/** = p, with blank characters removed */

public static String deblank(String p)

For example, if the argument is the string " a b c ", the result of the call is the
string "abc":

deblank(" a b c ") is "abc"

If the argument contains only blank characters (or no characters at all), the
result of the call is the empty String:

deblank(" ") is ""

In writing the method body, there are two cases to consider. The base case is
the case that p is the empty String; there are no blanks to remove, and p itself
can be returned.

The case that p contains at least one character itself breaks into two cases.
(1) If the first character of p is a blank, the result is the rest of p but with blanks
removed. (2) If the first character is not a blank, the result is the first character
prepended to (the rest of p but with blanks removed). This yields this body, with
some parts still in English:

if (p.length() == 0) {

return p;

}

// { p has at least one character }

if (p.charAt(0) == ' ')

{ return p[1..] but with blanks removed; }

// { first character of p is not a blank }

return p.charAt(0) + (p[1..], but with blanks removed);

This function is correct, but it has two English expressions, which we have
to Javanize. The expression (p[1..] but with blanks removed) is the same as the
value of the function given in the specification, except that the expression has
p[1..] instead of parameter p. Therefore, the expression can be implemented
using the Java expression

See lesson
page 15.1 to
get the function
from the CD.

Activity
15-1.3

406 Chapter 15 Recursion

Javanize and prepend. We coined the word javanize to mean “refine into Java”, or “replace by
an equivalent Java statement or expression”.

To append a value to a list means to insert it at the end of the list. There
exists no corresponding word to add the value at the beginning of the list, so we
have coined one. To prepend a value to a list means to insert it at the beginning
of the list.

deblank(p.substring(1))

We developed this call using our standard technique for developing function
calls; the only difference is that it is a call to the function being written —it is a
recursive call.

The final function is given in Fig. 15.2. And again, it consists of a base case
(the empty string), in which the answer is easy to calculate, and a recursive case.
The recursive case splits into two subcases; in each, the answer involves a recur-
sive call with a smaller part of the string as argument.

Because the body of the function is so simple, the two assertions could be
removed without harming readability. However, it is good to write such asser-
tions in all your recursive methods until you have fluency with recursion.

15.1.4 A function for a math definition

The notation n! is read as “n factorial”. For n ≥ 0, n! is defined as the product of
the numbers in the range 1..n:

n! = 1 * 2 * 3 *... * n

By this definition, 0! is 1 because the product of 0 numbers is 1. We can
write a recursive definition of n! by defining a base case and a recursive case:

0! = 1

n! = n * (n - 1)! (for n > 0)

It is easy to javanize this recursive definition of n! as a function. For the
base case, return 1. For the recursive case, return n * (n - 1), which can be done
with a recursive call, as shown in Fig. 15.3.

Many recursive math definitions can be easily javanized in this manner.

See lesson
page 15.1 to
get the function
from the CD.

Activity
15-1.4

15.1 The recursive pattern 407

/** = p, with blank characters removed */

public static String deblank(String p) {

if (p.length() == 0)

{ return p; }

// { p has at least one character }

if (p.charAt(0) == ' ')

{ return deblank(p.substring(1)); }

// { p’s first character is nonblank }

return p.charAt(0) + deblank(p.substring(1));

}

Figure 15.2: Recursive function deblank

15.1.5 The recursive pattern

In the previous three subsections, three recursive methods were developed. They
follow a pattern that is shared by all recursive methods.

1. There is one (possibly more) base case. This is a case for which no recur-
sive calls are used; the desired result can be calculated without using
recursion. The case involves the “smallest” possible arguments. In
method setToZero, the base case was an empty array segment. In
method deblank, it was a string of length 0. In method factorial, it was
an integer 0.

2. There is one (possibly more) recursive case. This case requires a recur-
sive call. In method setToZero, the recursive case was a nonempty array
segment. In method deblank, it was a string with at least one character.
In method factorial, it was an integer that is greater than 0.

In the recursive case, the idea is to identify a “smaller” problem of the same
type and write a recursive call for it. Thus, in developing the recursive case, we
look for a problem that has the same specification but on smaller values; this gen-
erally requires doing some processing before or after solving this smaller prob-
lem. This leads to recursive calls whose arguments are “smaller” than the param-
eters.

In method setToZero, the arguments of the recursive call were b, h + 1, k.
In method deblank, the argument was p[1..]. And in method factorial, the
argument was n-1.

How are the arguments of the recursive calls smaller? In method setToZero,
the size of segment b[h + 1..k] is one less than the size of b[h..k]. In method
deblank, the length of p[1..] is one less than the length of parameter p. And in
method factorial, n - 1 is smaller than n.

The big idea
Developing a recursive method will follow naturally as long as you hold

consciously to the idea that in the recursive case, you have to:

Recursion strategy. Identify a problem that is the same as the
specification of the method but on a smaller scale.

Activity
15-1.5

408 Chapter 15 Recursion

/** = n! (assuming n ≥ 0) */

public static int factorial(int n) {

if (n == 0)

{ return 1; }

// { n > 0 }

return n * factorial(n - 1);

}

Figure 15.3: Recursive function factorial

15.1.6 Self-review exercises

SR1. Define the term ancestor recursively —the way noun phrase was defined
in Sec. 15.1.1.

SR2. Define the syntax of decimal integers, like 5432 and 041, recursively.

The rest of these exercises ask you to write small recursive methods, which are
quite similar to those developed in this Sec. 15.1. For each, we give a specifica-
tion and method header. Write each one and then test it. It does no good to write
a function that you think is right but is wrong. When testing, first write calls that
test the base case; then slowly work your way up to calls with larger arguments.

SR3. /** Set each array element b[i] of b[h..n] to i */
public static void setToI(int[] b, int h, int n)

SR4. /** Print the squares of the integers in the range h..n. */

public static void printSquares(int h, int n)

SR5. /** Print n if it is not divisible by an integer in the range h..k */
public static void printIfNot(int n, int h, int k)

SR6. /** Print x if it is one of the values b[h..] */
public static void printX(int[] b, int x, int h)

SR7. /** Print n if it is divisible by an integer in the range h..k */
public static void printIf(int n, int h, int k)

SR8. /** Print the square of the integers in the range 0..n
in descending order of values in the range */

public static void printSquares(int n)

SR9. /** Set every element of b[h..] with even index to zero */

public static void zeroEven(int[] b, int h)

SR10. /** Print 5 if it is in b[h..k] */
public static void printIf5(int[] b, int h, int k)

SR11. /** = s with each char duplicated, e.g. dup("bcd") is "bbccdd" */
public static String dup(String s)

SR12. /** = sum of the characters in s (each character is a digit) */
public static int sumChars(String s)

SR13. /** = s with each character lower-cased */
public static String lowerCase(String s)

SR14. /** = s with every adjacent pair of characters swapped
(e.g. swapPairs("abcde") is "badce" */

public static int swapPairs(String s)

15.1 The recursive pattern 409

SR15. /** = s with the first, third, fifth, ..., chars removed */

public static int removeE(String s)

Answers to self-review exercises

SR1. An ancestor is either a parent or an ancestor of a parent.

SR2. An integer is either a digit (one of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) or an inte-
ger followed by a digit.

We present only the bodies of the methods.

SR3. if (h > n) { return; }

b[h]= h;

setToI(b, h + 1, n);

SR4. if (h > n) { return; }

System.out.println(h * h);

printSquares(h + 1, n);

SR5. if (h > k) {

System.out.println(n);

return;

}

if (h != 0 && n % h == 0)

{ return; }

// { n is not divisible by h }
printIfNot(n, h + 1, k);

SR6. if (h >= b.length) { return; }

if (x == b[h]) {

System.out.println(x);

return;

}

printX(b, x, h + 1);

SR7. if (h > k) { return; }

if (h != 0 && n % h == 0) {

System.out.println(n);

return;

}

printIf(n, h + 1, k);

SR8. if (n < 0) { return; }

System.out.println(n * n);

printSquares(n - 1);

SR9. if (h >= b.length) { return; }

if (h % 2 == 0)

410 Chapter 15 Recursion

{ b[h]= 0; }

zeroEven(b, h + 1);

SR10. if (h > k) { return; }

if (b[h] == 5) {

System.out.println(5);

return;

}

printIf5(b, h + 1, k);

SR11. if (s.length() == 0) { return s; }

return s.charAt(0) + s.charAt(0) + dup(s.substring(1));

SR12. if (s.length() == 0) { return 0; }

return ((int) s.charAt(0) - (int) '0')

+ sumChars(s.substring(1));

SR13. if (s.length() == 0) { return s; }

return Character.toLowerCase(s.charAt(0))

+ lowerCase(s.substring(1));

SR14. if (s.length() <= 1) { return s; }

return s.charAt(1)

+ (s.charAt(0) + swapPairs(s.substring(2)));

SR15. if (s.length() <= 1) { return ""; }

return s.charAt(2) + removeE(s.substring(3));

15.2 Some interesting recursive methods

15.2.1 Tiling Elaine’s kitchen

Elaine has a 16-foot by 16-foot kitchen (see Fig. 15.4). In one of the squares of
this kitchen is a one-foot by one-foot refrigerator. Elaine would like the floor of
the kitchen, except for the refrigerator square, tiled with L-shaped tiles, each of
which is a 2-foot by 2-foot square with one corner removed. Can Elaine's kitchen
be tiled with such tiles? How should we go about it?

Activity
15-3.1

15.2 Some interesting recursive methods 411

Figure 15.4: Elaine’s kitchen and the tiles

16

16

refrigerator, in one of the squares

the four kinds of tiles

We generalize to the task of tiling a 2n by 2n square, in which one square is
already covered. This is for some n ≥ 0:

/** Tile the 2n by 2n square with upper left corner (x,y). One
square foot of it is already covered. */

public static void tile(int n, int x, int y)

We develop a recursive procedure to tile the kitchen. Part of our resulting
program is in English, rather than Java, so that we can hide unimportant details.
For example, we are not explicit about where the refrigerator is. This way, the
beautiful idea behind the tiling is most easily seen.

We take n = 0 as the base case. Since 20 = 1, a 1 by 1 square has to be tiled.
But it is already covered, so no tiling needs to be done.

We want to solve the case n > 0 using recursion. That requires finding the
same problem on a smaller scale, and the obvious thing to consider is a 2n-1 by
2n-1 kitchen. The way to get such a kitchen is to split the 2n by 2n kitchen into
four quadrants, but then we have four 2n-1 by 2n-1 kitchens. One of them con-
tains a covered square, but the other three do not. But we can place one tile so
that it covers one square of each of these three quadrants (see the diagram on the
right in Fig. 15.4). Now, all four quadrants can be tiled using recursive calls to
procedure tile. The procedure is given in Fig. 15.5.

Isn't it a neat algorithm? And the key to its development was so simple. In
the recursive case, consciously look for the same problem on a smaller scale.

15.2.2 Computing xy

We develop a recursive function that computes xy for y ≥ 0:

/** = xy. Precondition: y ≥ 0 */

public static int exp(int x, int y)

If y = 0, then xy = 1 , so we use y = 0 as the base case.

Activity
15-3.2

See lesson
page 15.3 to
get the method
from the CD.

412 Chapter 15 Recursion

/** Tile the 2n by 2n square with upper left corner (x, y).
One sub-square is already covered. */

public static void tile(int n, int x, int y) {

if (n == 0)

{ return; }

Place a tile so that each quadrant has one covered square;
tile(n - 1, x, y);

tile(n - 1, x + 2n-1, y);

tile(n - 1, x, y + 2n-1);

tile(n - 1, x + 2n-1, y + 2n-1);

}

Figure 15.5: Tiling Elaine’s kitchen

Consider the case y > 0. If y is even, then xy equals (x * x)y/2. For exam-
ple, instead of multiplying six 4s together, one can multiply three (4*4)s. Thus,
if y is even, we can use a recursive call to compute (x * x)y/2:

if (y % 2 == 0) { return exp(x * x, y / 2); }

If y is odd, we can compute xy as x * xy-1, using a recursive call:

if (y % 2 == 1) { return x * exp(x, y - 1); }

The function appears in Fig. 15.6. Like the previous iterative version devel-
oped in Sec. 7.3.2, it requires time proportional to log y.

15.2.3 Computing Fibonacci numbers

The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, … is defined by F0 = 0, F1 = 1, and
Fn = Fn-1 + Fn-2 for n > 1. Each value in the sequence, except the first and sec-
ond, is the sum of the two preceding values. It is easy to write a recursive func-
tion that calculates one of these numbers:

/** = Fn, for n >= 0 */
public static int Fib(int n) {

if (n <= 1)

{ return n; }

return Fib(n - 1) + Fib(n - 2);

}

The difficulty with this function is that it is extremely slow. To see this, start
drawing the tree of parameters of all recursive calls:

n

n-1 n-2

n-2 n-3 n-3 n-4

See lesson page
15.3 to get this
function from
the CD.

15.2 Some interesting recursive methods 413

/** = xy. Precondition: y ≥ 0 */
public static int exp(int x, int y) {

if (y == 0)

{ return 1 }

if (y % 2 == 0)

{ return exp(x * x, y / 2); }

return x * exp(x, y - 1);

}

Figure 15.6: Function exp

The root of this tree indicates that the call Fib(n) calls Fib(n-1) and
Fib(n-2). Then, Fib(n-1) calls Fib(n-2) and Fib(n-3), while Fib(n-2) calls
Fib(n-3) and Fib(n-4). Thus, two calls Fib(n-2) are made, and one can see
by drawing the next level that three calls Fib(n-3) are made. Moreover, one can
prove that in calculating Fn, Fk-1 calls of the form Fib(n-k) are made, for k =
1, 2, 3, …. That is a huge number of calls.

One can write a more efficient recursive function for calculating Fn, one that
makes at most n recursive calls, by adding more parameters to the function. Here
is a specification for the function:

/** = Fn, for n > 0, given k in range 1..n, a = Fk, and b = Fk-1 */

public static int Fib(int n, int k, int a, int b)

To calculate F10, one would write the call Fib(10, 1, 1, 0). Exercise 8 asks
you to write this function.

Adding parameters to help make a recursive function more efficient is akin
to adding local variables to make a loop more efficient. Some of the exercises ask
you to add more parameters to increase efficiency of recursive functions.

15.2.4 Merge sort

We develop a function that sorts array segment b[h..k]:

/** Sort b[h..k] */
public static void mergesort(int[] b, int h, int k)

This development shows a fairly simple use of recursion. However, the algo-
rithm is less efficient than algorithm quicksort, which is shown in a later sec-
tion, so it is rarely used in practice. This algorithm is called mergesort because
it will make use of a method merge, which merges two sorted array segments.

We take as the base case a segment with at most one element, for such a seg-
ment is already sorted, so execution of the procedure can terminate immediately.

We consider the case of a segment with at least two elements. Suppose we
view this segment as split into two separate segments, b[h..e] and b[e + 1..k].
These segments are chosen to be as close in size as possible, i.e. e = (h + k) /

2. Suppose we sort the first segment and then sort the second segment. Then it
remains to merge these two sorted segments together. A procedure to do this was
developed in activity 8-5.7 of the ProgramLive CD, and it is called using
merge(b, h, e, k);. The completed method is given in Fig. 15.7.

This algorithm requires extra space of size (h - k) / 2 to hold a copied array
segment during the last step of merging the two sorted segments together.
However, the algorithm is much faster than insertion sort or selection sort. If the
original array segment to be sorted has n elements, the algorithm always takes
time proportional to n log n. In other words, if the original array segment has 2m

elements, it takes time proportional to m*2m. In the worst case, insertion sort and
selection sort take time proportional to 22m.

See lesson page
15.3 to get this
function from
the CD.

Activity
15-3.3

414 Chapter 15 Recursion

15.3 Execution of recursive calls

Understanding how a recursive method call is executed and understanding what
a recursive method call does are two different activities. Separate the two com-
pletely in your mind.

Understanding what a method call does requires looking at the specification
of the method. Make a copy of the specification and replace all occurrences of
the method parameters by the arguments of the call; the result is a command, usu-
ally in a mixture of English and math, that is equivalent to the method call. It
does not matter whether the method called is recursive or not; understanding
what it does is the same.

However, you may be wondering how recursion works. Suppose in the body
of a function factorial(n) there is a call factorial(n - 1). Evaluating fac-
torial(n - 1) requires executing the method body; how can the method body
be executed a second time before its first execution is finished?

The answer to this is simple. If you evaluate an initial call factorial(3),
say, following precisely the steps presented in Sec. 2.7.2, you will see that those
steps work for recursive as well as non-recursive calls. Nothing new has to be
learned to handle recursion! Whenever a method is called, a new frame is creat-
ed and pushed on the call stack, and that frame is destroyed only when the call
completes. If there are 30 recursive, uncompleted calls to factorial, then the
call stack contains 30 frames for factorial.

Activity 15-2.1 shows evaluation of recursive calls, showing how the call
stack changes, in a way that we cannot match on paper. We urge you to watch it
now to gain full understanding. You will come to understand that the steps pre-
sented in Sec. 2.7.2 work for recursive as well as non-recursive calls.

The depth of recursion at any point of execution in a call of a recursive
method is the number of frames that are currently in use. Each of the frames takes
a certain amount of space, say f bytes of memory, and it also takes time to allo-
cate the space and to remove it. If the maximum depth of recursion during exe-
cution of a method call is m, then m * f bytes of memory are required during exe-
cution. For some applications, this space requirement may be a problem, and
people have been known to eschew recursion in favor of loops because of it.

Activity 15-2.1
shows execu-
tion of recursive
calls in a way
that we cannot
do here. Watch
that activity!

15.3 Execution of recursive calls 415

/** Sort b[h..k] */
public static void mergesort(int[] b, int h, int k) {

if (h >= k)

{ return; }

int e= (h + k) / 2;

mergesort(b, h, e); // Sort b[h..e]
mergesort(b, e + 1, k); // Sort b[e+1..k]
merge(b, h, e, k); // Merge the two sorted segments

}

Figure 15.7: Function mergesort

For certain recursive calls, called tail-recursive calls, no frame need be allo-
cated, as we discuss in the next subsection. However, your Java compiler does
not use this efficient implementation of tail-recursive calls. In subsection 15.3.2,
we show how you can rewrite tail-recursive calls to make them more efficient.

15.3.1 Tail-recursive procedure calls

We use the first recursive procedure we looked at to discuss tail recursion:

/** Set elements of b[h..k] to 0 */
public static void setToZero(int[] b, int k, int n) {

if (h > k)

{ return k; }

b[h]= 0;

setToZero(b, h + 1, k);

}

A recursive call of a procedure is tail recursive if it is the last statement in
the procedure body or if it is followed directly by a return statement. In this pro-
cedure, the call:

setToZero(b, h + 1, k);

is tail recursive, since it is the last statement in the body.
Because no statements follow this call, it can be executed without using an

additional frame. We illustrate how this can be done using the call:

setToZero(b, 0, 2);

This call creates a frame at the top of the call stack, which looks like this (we
show also the array whose name is in b):

Execution of the body of setToZero begins. The value of condition h > k is
false, so the statement following the if-statement is executed next. Since h is 0,
this statement sets the first array element to 0, yielding this state:

The program counter is now 4, indicating that the next statement to execute
is the tail-recursive call setToZero(b, h + 1, k);. Once this call is finished, the
above frame becomes active, but its contents will not be referenced because there

setToZero: 4 ?

b a1 h 0 k 2 a1

h k

0 6 3

setToZero: 1 ?

b a1 h 0 k 2 a1

h k

5 6 3

Using synched
animation,
activity 15-2.2
explains this
material better.

Activity
15-2.2

416 Chapter 15 Recursion

are no more statements to execute in the method body. Since the contents of this
frame are not used again, this frame can be used to hold the contents of the frame
for the tail-recursive call, so a new frame for the tail-recursive call need not be
created! For tail-recursive calls: a new frame need not be created because they
can use the current active frame.

Execution of a tail-recursive call, then, can proceed as follows:

1. Evaluate the arguments of the call (in this case, b, h + 1, and k) and store
them in the parameters of the active frame (variables b, h, and k).

2. Set the program counter to 1 so that the method body will be executed
again.

Here is the frame after these two steps have been completed and just before
the first statement in the method body is to be executed:

In method setToZero, the only recursive call is tail-recursive, so any call to
setToZero uses only one frame! This method is almost as efficient as a loop that
sets the array elements to zero.

15.3.2 Tail-recursive function calls

Consider a function f(parameters) {...}. Its body always terminates with a
return statement:

return expression ;

In a function f, a return statement of the form:

return f(arguments);

is called tail recursive. A return statement of any other form is not tail recursive.
When the call f(arguments) in a tail-recursive return statement is evaluat-

ed, no additional frame is needed. Instead, the active frame —the one for the
function body currently being executed— can be used. This is similar to the way
tail-recursive procedure calls are handled, and we leave details to you.

There are many functional languages, like ML, Lisp, Scheme, and Haskell.
When programming in these languages, the use of the assignment statement is
avoided as much as possible. Instead, one writes almost all code using function
definitions, function calls, and conditional expressions. Since assignments are
rarely used, loops are used even more rarely. People who are fluent in recursion
usually prefer it over loops because programs are easier to write and understand.

All compilers for functional languages recognize tail-recursive calls and
implement them efficiently, using no extra frames for them, as shown in this and

setToZero: 1 ?

b a1 h 1 k 2 a1

h k

0 6 3

15.3 Execution of recursive calls 417

the previous sections. Thus, the additional overhead and space for recursive calls
is eliminated, and the programs are just about as fast as ones that use loops.

Not all compilers recognize tail recursion and implement it efficiently. For
example, Java, by design, does not. In the next section, we show you how you
can rewrite a recursive procedure to make tail-recursive calls efficient.

15.3.3 Removing tail-recursion: procedures

We give a series of three steps for removing tail-recursive calls in a procedure.
Each step preserves the correctness of the procedure. We illustrate removal of
tail-recursive procedure calls using procedure setToZero:

/** Set elements of b[h..k] to 0 */
public static void setToZero(int[] b, int k, int n) {

if (h > k)

{ return k; }

b[h]= 0;

setToZero(b, h + 1, k);

}

Here are the first two steps:

Step 1. Insert a return statement at the end of the body (if it is not
there).

Step 2. Place the procedure body in a while-loop with loop con-
dition true. Label the while-loop and indicate its end with a com-
ment. Use this convention whenever you implement tail-recursion
efficiently yourself.

Here is the result of applying the first two steps to procedure setToZero:

/** Set elements of b[h..k] to 0 */
public static void setToZero(int[] b, int k, int n) {

tailRecursionLoop: while (true) {

if (h > k)

{ return k; }

b[h]= 0;

setToZero(b, h + 1, k);

return;

} // end tailRecursionLoop

}

Step 2 leaves the procedure correct, for the following reason. Since the last
statement of the loop body is a return statement, the iteration of the loop is guar-
anteed to terminate by executing a return statement, so the old procedure body is
executed exactly once, just as before the loop was added.

Using synched
animation,
activity 15-2.3
explains this
material better.

Activity
15-2.3

418 Chapter 15 Recursion

We now have the following situation. Each tail-recursive call is followed by
a return statement. The final step of the transformation is as follows:

Step 3. Replace each tail-recursive call and following return
statement by code that assigns the arguments to the parameters
and then terminates the repetend using a continue statement.

In the case of setToZero, there is one tail-recursive call. Parameters b and
k need not be assigned since they are the same as the arguments. Parameter h is
assigned the value of the second argument, h + 1. The result of this transforma-
tion is shown below.

Each time you perform this transformation on a procedure, use the same
label for the additional loop and the same comment at the end of the loop. Also,
include the statement-comment for each recursive call, as done for setToZero
above. Finally, include the continue statement even if it is the last statement in
the repetend. Using these conventions will help you and others realize that this
transformation was applied to the procedure.

/** Set elements of b[h..k] to 0 */
public static void setToZero(int[] b, int k, int n) {

tailRecursionLoop: while (true) {

if (h > k)

{ return k; }

b[h]= 0;

// setToZero(b, h + 1, k);

h= h + 1;

continue tailRecursionLoop;

} // end tailRecursionLoop

}

15.3.4 Removing tail-recursion: functions

Removing tail-recursive function calls is similar:

Step 1. Enclose the function body in a labeled while loop with
loop condition true.

Step 2. Replace each tail-recursive return statement by code that
assigns the arguments to the parameters and then terminates exe-
cution of the repetend using a continue statement.

We illustrate the removal of tail-recursive function calls using this function:

15.3 Execution of recursive calls 419

/** = k * n! (assuming n >= 0) */

public static int fact1(int k, int n) {

if (n <= 1) {

return k;

}

return fact1(k * n, n - 1);

}

Applying the first step of the transformation results in this function:

/** = k * n! (assuming n >= 0) */

public static int fact1(int k, int n) {

tailRecursionLoop: while (true) {

if (n <= 1)

{ return k; }

return fact1(k * n, n - 1);

} // end tailRecursionLoop

}

Applying the second step of the transformation results in the function below.
Each time you perform this transformation on a function, use the same label for
the additional loop and the same comment at the end of the loop. Also, include
the statement-comment for each recursive call. These conventions will help you
and others realize that this transformation was applied to the function.

/** = k * n! (assuming n >= 0) */

public static int fact1(int k, int n) {

tailRecursionLoop: while (true) {

if (n <= 1)

{ return k; }

// return fact1(k * n, n - 1);

k= k * n; n= n - 1;

continue tailRecursionLoop;

} // end tailRecursionLoop

}

15.4 Quicksort

Procedure quicksort sorts array segment b[h..k]. Quicksort is the most
famous and most used sorting algorithm. In the worst case, for a segment of n
elements, it takes time proportional to n2, but in the average or expected case, it
takes time proportional to n log n. Moreover, it can be engineered to take space
proportional only to log n.

See lesson page
15.4 to get
Quicksort from
the CD.

420 Chapter 15 Recursion

15.4.1 Algorithm partition

Algorithm quicksort rests heavily on algorithm partition, which is discussed
in detail in activity 8-5.5 of the ProgramLive CD. In learning quicksort, it is
important that you understand what partition does, if not how it does it. We
explain it with an example. Here is its specification:

/** b[h..k] has at least three elements. Let x be the value initially
in b[h]. Permute b[h..k] and return the integer j satisfying R:
b[h..j-1] ≤ b[j] = x ≤ b[j+1..k] */

public static int partition(int[] b, int h, int k)

Here is an example. Suppose b[h..k] contains:

The value in b[h] is called the pivot value. The call partition(b, h, k)

rearranges b[h..k] to put elements smaller than the pivot value to its left and
larger elements to its right. But the arrangement of the values in the two seg-
ments is not specified. Also, the placement of elements that are equal to the pivot
value is not specified. We say that the specification is nondeterministi because
different implementations can give different results and still satisfy the specifi-
cation. In this case, there are several possibilities for the final arrangement of the
array segment, two of which are shown here:

The value j of the index of the pivot element b[j] is returned.
The specification of this function is nondeterministic. Since we do not care

about the order of values in the two final segments b[h..j-1] and b[j+1..k],
function partition can be written to take time proportional to the number of ele-
ments, k + 1 - h. It makes up to k + 1 - h array comparisons.

15.4.2 Basic quicksort

We turn to procedure quicksort:

/** Sort b[h..k] */
public static void quicksort(int[] b, int h, int k)

We take as the base case an array segment with fewer than 10 elements. In
this case, the array segment is sorted using insertionsort. Experiments have
shown that this base case is efficient. Procedure quicksort is fast on large seg-
ments but relatively slow on small ones.

Consider the case of an array segment with at least 10 elements. Partitioning

Activity
15-4.1

h j k

2 4 5 7 5 8

h j k

4 2 5 5 7 8

h k

5 4 8 7 5 2

Activity 8-5.5
discusses algo-
rithm partition.
A footnote tells
you how to get
it from the CD.

15.4 Quicksort 421

the segment using partition(b, h, k) produces an array segment that looks
like this:

In this situation, what remains to be done? Well, segment b[h..j-1] has to be
sorted and segment b[j+1..k] has to be sorted. Once they are in non-descend-
ing order, the complete segment b[h..k] is in non-descending order. So that is
it! The complete basic quicksort is given in Fig. 15.8.

15.4.3 Quicksort at its best

Figure 15.9 contains procedure quicksort with one change. The base case
occurs when the segment to be sorted has less than 2 elements, rather than 10, so
that we can analyze quicksort on a small, 16-element array segment:

Activity
15-4.2

h j k

≤ b[j] ≥ b[j]

422 Chapter 15 Recursion

/** Sort b[h..k] */
public static void quicksort(int[] b, int h, int k) {

if (k + 1 - h < 2) {

insertionsort(b, h, k);

return;

}

int j= partition(b, h, k);

// { b[h..j-1] <= b[j] <= b[j+1..k] }

quicksort(b, h, j - 1);

quicksort(b, j + 1, k);

}

Figure 15.9: Basic quicksort with a base case of a segment with at most one element

/** Sort b[h..k] */
public static void quicksort(int[] b, int h, int k) {

if (k + 1 - h < 10) {

insertionsort(b, h, k);

return;

}

int j= partition(b, h, k);

// { b[h..j-1] <= b[j] <= b[j+1..k] }

quicksort(b, h, j - 1);

quicksort(b, j + 1, k);

}

Figure 15.8: Basic quicksort

We develop an upper bound on the number of array comparisons that
quicksort will make when sorting this array segment, in the best possible case,
under the assumption that method partition performs one comparison for each
array element that it processes.

When quicksort is given this array segment to sort, the if-condition in its
body evaluates to false, so the assignment to j is executed. This assignment
partitions as shown below —to the right of the array, we give an upper bound 16
on the number of array comparisons used to partition the array.

The initial value in b[0], the pivot value, has been placed in b[j], everything to
the left of b[j] is at most b[j], and everything to the right is at least b[j], so
the comment following the assignment to j has been truthified.

Procedure quicksort sorts b[0..j-1] and then b[j+1..15]. But for this
analysis, it is better to think of quicksort as partitioning both these segments
and then sorting them. Below, we show the results of partitioning the two seg-
ments. Since each segment has at most 8 elements, the number of comparisons
made in partitioning each of them is at most 8, for a total of at most 16.

Now 4 segments are to be sorted recursively: b[0..2], b[4..6], b[8..11],
and b[13..15]. Each segment has at most 4 elements. The first step in sorting
them is to partition them, and since each has at most 4 elements, partitioning
them takes at most 4 * 4 = 16 comparisons.

On the next level, 8 segments are partitioned, each with at most 2 elements,
so again it takes a maximum of 16 comparisons. This leaves 16 segments of at
most 1 element each, and each is handled as a base case, so no more comparisons
are done.

In summary, here is what procedure partition does on each level:

level no. of partitions max size of partition max no. of comparisons

1 1 16 16

2 2 8 16

3 4 4 16

4 8 2 16

j

0 0 1 1 3 2 3 8 + 8 = 16 comparisons

j

5 5 6 4 7 8 7 9

0 j 15

1 3 0 2 0 3 1 4 7 9 6 4 5 8 7 5 16 comparisons

0 15

4 6 0 1 0 4 5 7 3 9 2 3 1 8 7 5

15.4 Quicksort 423

Thus, to sort a segment of 16 elements, or 24 elements, takes at most 4*24

array comparisons. We can generalize this: to sort a segment of 2n elements takes
at most n*2n comparisons. However, this is only in the case that each call to par-
tition partitions the segment into two segments of roughly the same size. The
next section shows you a case where performance is not so good.

15.4.4 Quicksort at its worst

We do the same analysis for sorting an array that is already in ascending order:

Since the pivot value is 0, the call to partition could yield this array:

This call to partition took at most 16 array comparisons because each element
of the array has to be looked at.

Sorting the empty segment b[0..j-1] takes no time. But sorting b[j+1..
15] requires partitioning the segment, which requires up to 15 array comparisons
and could produce the following:

We see that if the pivot value is the smallest value in an array segment of
size n, partitioning the array takes up to n array comparisons and may produce
an empty segment and a segment of size n - 1. This means that to sort the 16-
element array could take up to:

16 + 15 + 14 + ... + 1 = 17 * 16 / 2

array comparisons. Generalizing, to sort an array of size n could take up to n *
(n + 1) / 2 array comparisons, which is as bad as insertionsort or selec-
tionsort. Quicksort does its worst on an array that is already sorted!

Further, the depth of recursion in this worst case is the size of the array, so
quicksort may take space proportional to the size of the array, and that is bad.

We cannot easily reduce the worst-case time of quicksort, but we can take
a few steps to reduce the probability of it happening. We can also modify quick-
sort to reduce the worst-case space requirements by reducing to n the maximum
depth of recursion to sort an array of size 2n. We see these changes in the next
two subsections.

j 15

1 1 2 2 3 4 5 5 6 6 7 7 8 8 9

j 15

0 1 1 2 2 3 4 5 5 6 6 7 7 8 8 9

0 15

0 1 1 2 2 3 4 5 5 6 6 7 7 8 8 9

Activity
15-4.3

424 Chapter 15 Recursion

15.4.5 Quicksort’s time/space problems

Making partition’s segments closer in size
If the pivot value —the value in b[h]— is close to the smallest or largest

value in the array segment, function partition will produce two segments of
disparate sizes. We want the segments to be as close to the same size as possible.
Making them the same size would require finding the median of b[h..k] and
placing it in b[h]. However, finding the median takes so much time that the
algorithm in total would be less efficient. So we don’t do that.

Instead, we look at three values, b[h], b[(h + k) / 2], and b[k], and place
their median in b[h]. While this doesn’t guarantee that the segments are closer
in size, it increases the chances that they will be. In activity 8-5.6 of Program-
Live, we develop a procedure medianOf3(b, h, k) to swap these three array ele-
ments to place the median in b[h], and we call this procedure before calling
function partition (see Fig. 15.10).

Solving the space inefficiency
In Sec. 15.4.4, we saw that the space required by quicksort was propor-

tional to the maximum depth of recursion. The only way to reduce the space is
to reduce the number of frames that are placed on the stack. We know how to do
this in some cases, for we know how to implement tail-recursive calls without
using more frames.

In the basic quicksort of Fig. 15.8, the last call is indeed tail recursive. We

Activity
15-4.4

15.4 Quicksort 425

/** Sort b[h..k] */
public static void quicksort(int[] b, int h, int k) {

if (k + 1 - h < 10) {

insertionsort(b, h, k);

return;

}

medianOf3(b, h, k);

// { b[h] is between b[(j + k / 2)] and b[k] }
int j= partition(b,h,k);

// { b[h..j-1] <= b[j] <= b[j+1..k] }

if (j - h) <= k - j) {

quicksort(b, h, j - 1);

quicksort(b, j + 1, k);

} else {

quicksort(b, j + 1, k);

quicksort(b, h, j - 1);

}

}

Figure 15.10: Enhanced quicksort

see how to modify the algorithm to take advantage of this. We show how to min-
imize the maximum number of frames needed. For this explanation, assume that
the number of elements, k + 1 - h, is a power of 2, say k + 1 - h = 2n.

After partitioning, two segments are sorted. We change the body so that the
smaller of the two subsegments is sorted first, as shown in Fig. 15.10. First, note
that the new version is correct because the same two recursive calls are execut-
ed. The order in which they are executed may differ, but the order does not mat-
ter. Second, in each of the two cases, the last call is tail-recursive, so no extra
frame is needed for it.

Consider the first call in each of the two cases. The segment being sorted is
the smaller of the two, so it has less than 2n-1 elements. We use this fact to deter-
mine the maximum depth of recursion, assuming that tail-recursive calls do not
need their own frames. The first frame is for a call with a segment of size 2n. The
next frame is for a call with a segment of size at most 2n-1. The next frame is for
a call with a segment of size at most 2n-2. And so on. Thus, the frames for the
calls are for segments of size 2n, 2n-1, 2n-2, ... 23 (remember that segments of
size 23 or less are base cases).

426 Chapter 15 Recursion

/** Sort b[h..k] */
public static void quicksort(int[] b, int h, int k) {

tailRecursionLoop: while(true) {

if (k + 1 - h < 10) {

insertionSort(b, h, k);

return;

}

medianOf3(b,h,k);

// { b[h] is between b[(j + k / 2)] and b[k] }
int j= partition(b,h,k);

// { b[h..j-1] <= b[j] <= b[j+1..k] }

if ((j - h) <= k - j) {

quicksort(b, h, j - 1);

// quicksort(b, j + 1, k);

h= j + 1;

continue tailRecursionLoop;

} else {

quicksort(b, j + 1, k);

// quicksort(b, h, j - 1);

k= j - 1;

continue tailRecursionLoop;

}

} // tailRecursionLoop

}

Figure 15.11: Quicksort with tail recursion removed

Thus, we see that sorting an array of size 2n requires at most n frames at any
one time. As an example, to sort an array of size 215 = 32768, at most 15 frames
are needed. We have indeed achieved a significant reduction in space require-
ments —if tail-recursive calls are implemented efficiently.

15.4.6 Removing quicksort’s tail recursion

In Sec. 15.3.3, we showed how to remove tail-recursive procedure calls. We use
this technique to remove the tail-recursive calls of procedure quicksort in Fig.
15.10, showing the result in Fig. 15.11. Figure 15.11, then, is our final version of
quicksort. For an array segment of size n, it takes space proportional to log n.
Its worst case time is proportional to n2, but its expected time is proportional to
n log n.

15.5 Object recursion

In a class C, we may create and store another instance of C, and, in that instance
we may create and store another instance of C, and so on. This is a form of recur-
sion, called object recursion. Of course, this process must stop at some point, or
else an unending number of instances of Cwill be created. A folder of class C that
contains a non-null field of class C is a recursive case of object recursion; a fold-
er of class C that does not contain a non-null field of class C is a base case.

We illustrate object recursion using a class that enumerates the permutations
of a String. The permutations of a String like "xyz" is the set of all its arrange-
ments, e.g.:

"xyz", "xzy", "yxz", "yzx", "zxy", "zyx"

The only permutation of the empty String "" is itself, "", and the only permu-
tation of a String of one element, like "x", is itself.

We write a class PermutationGenerator with the following methods:

1. A constructor with a String parameter w.
2. A function nextElement; which returns the “next” permutation of w.
3. A function hasMoreElements, which indicates whether nextElement

has been called enough times to produce all the permutations of w.

Suppose we execute:

PermutationGenerator e = new PermutationGenerator("xyz");

Then, six calls of the form e.nextElement() will produce the six permuta-
tions of "xyz". Since we may not know how many permutations there are, we
should always call function e.hasMoreElements() before calling e.nextElem-
ent(), to make sure another permutation exists.

Class PermutationGenerator implements interface Enumeration (see
Sec. 12.3), but you do not have to understand interfaces to understand class

See lesson page
15.1 to get the
class for gener-
ating permuta-
tions from the
CD.

Activity
15-4.5

15.5 Object recursion 427

PermutationGenerator. Just know that by “enumerating” the permutations of
w we mean returning them, one by one, as the result of calls to function next-
Element. Also, the rule must be followed that nextElement is called only if it is
guaranteed that another permutation of w exists to be enumerated.

Class PermutationGenerator is in Figs. 15.12. and 15.13.
Our basic idea for enumerating the permutations of a String like "xyz" is

first to enumerate the permutations that begin with x, then to enumerate the per-
mutations that begin with "y", and then to enumerate the permutations that begin
with "z". We will do this using the following fields.

Variable word contains the word whose permutations are being enumerated,
and hasAnother indicates whether all its permutations have been enumerated.

Variable pos contains the index of a character in word, and permutations
beginning with character word[pos] are being enumerated. Variable subWord
then contains the characters of word but with character word[pos] removed.
Thus, we are in the process of constructing and enumerating:

word[pos] + first permutation of subWord
word[pos] + second permutation of subWord
…

word[pos] + last permutation of subWord

How do we construct these permutations of subWord? We use an instance of
PermutationGenerator, whose name is stored in field subEnum. This is the
recursively constructed object.

At this point, turn to the beginning of Fig. 15.12 and read carefully the class
invariant, which describes the relation among the fields of the class.

Now, one can look at the constructor and see that it truthifies the represen-
tation invariant. Also, function hasMoreElements is easily seen to be correct.

Function nextElement is more complicated. First, if word is the empty
string, it sets hasAnother to indicate that there are no more permutations and
returns the empty string. If word is not the empty string, it first stores the next
permutation in variable next —the permutation is the character word[pos] cate-
nated with the next permutation of subWord. It then calls a private procedure
getReadyForNext, which appears in Fig. 15.13. This procedure does what has
to be done to make the class invariant true after permutation next is returned.
Then, permutation next is returned. And that is it.

Generating permutations would be much harder if we did not use recursive
objects. With them, the task turns out to be relatively simple.

15.6 Key concepts

• Recursive definitions. Recursive definitions play an important role in mathe-
matics and fields that use mathematics.

• Recursion methods and recursive objects. In programming, recursion comes

428 Chapter 15 Recursion

15.6 Key concepts 429

import java.util.*;

/** An instance produces permutations of a string */

public class PermutationGenerator implements Enumeration {

/* class invariant:
(1) The definitions of word, hasAnother, and pos hold
(2) In the case that word != "":

(a) Definitions of subWord and subEnum hold
(b) Permutations of word that begin with a letter in word[0..pos-1] have

been generated.
(c) All permutations of the form word[pos] + e

where e was enumerated by subEnum have been enumerated
(d) If pos < word.length, e has another permutation to enumerate */

private String word; // The word whose permutations are being enumerated
private boolean hasAnother= true; // = "there is another permutation to enumerate"

// if word is not "", then we use these variables:
private int pos; // 0 <= pos <= word.length

private String subWord; // word but with character word[pos] removed
private PermutationGenerator subEnum; // An enumeration for subWord

// Constructor: an enumeration for w
public PermutationGenerator(String w) {

word= w; pos= 0;

if (word.length() != 0) {

subWord= word.substring(1);

subEnum= new PermutationGenerator(subWord);

}

}

/** = this enumeration has another element */

public boolean hasMoreElements()

{ return hasAnother; }

/** = the next permutation of this enumeration */

public Object nextElement() {

if (word.equals("")) {

hasAnother= false;

return "";

}

String next= word.charAt(pos) + (String) subEnum.nextElement();

getReadyForNext();

return next;

}

Figure 15.12: Class PermutationGenerator (see also Fig. 15.13)

in two forms: recursive methods (methods that call themselves) and recursive
objects (objects of a class that contain an instance of the same class).

• Base cases and recursive cases. With regard to methods, a base case is a set
of parameter values for which no recursive call is necessary; these cases are in
some sense the “smallest” cases. A recursive case is a case in which a recursive
call is made on a smaller problem of the same kind.

• Model of execution. The model of execution of method calls that was present-
ed in Sec. 2.7 works even if there are recursive calls. A new frame is created
whenever the method is called, so several frames for different calls to the same
method may be in memory at the same time.

• Depth of recursion. The depth of recursion is the number of frames for calls
to the same method that have not yet completed. There should be a maximum
depth of recursion, or else there is infinite recursion.

• Two perspectives on recursion. There are two perspectives on recursive
method calls. To understand a body with a recursive call in it, understand that call
in terms of the spec of the method. To understand how recursion works in gen-
eral, look at how recursive calls are executed, using the model of memory.

• Tail recursion. A recursive call is tail recursive if nothing is done in the method
body once the call is completed. Tail-recursive calls can be implemented without
creating another frame. However, if the system does not do that, you can remove
tail-recursive calls yourself.

430 Chapter 15 Recursion

/** Variable word is not "". If subEnum has no more enumerations, then add 1 to pos,
keeping the definition of all fields true */

private void getReadyForNext() {

if (subEnum.hasMoreElements())

{ return; }

pos= pos + 1;

if (pos == word.length()) {

hasAnother= false;

return;

}

// Store in subWord the word but without character word[pos]
// and create an enumeration subEnum for it
subWord= word.substring(0,pos) + word.substring(pos + 1);

subEnum= new PermutationGenerator(subWord);

}

}

Figure 15.13: Class PermutationGenerator (continued)

Exercises for Chapter 15

1. (a) Define descendent recursively.
(b) Define the format of binary integers (sequences of 0s and 1s) recur-

sively.
(c) Define the format of Java identifiers recursively.
(d) Define a list of integers separated by commas recursively.

2. Write a recursive definition for the product x * y of two integers x and y,
where y ≥ 0.

3. Write a recursive definition for exponentiation xy of two integers x and y,
where y ≥ 0.

4. Write a recursive function to sum the values in a range. With the specification
given for it, the values have to be summed from largest to smallest.

/** = sum of integers in the range 0..n, for n ≥ -1 */
public static int sum(int n)

5. The function of the previous exercise has a recursive call that is not tail-recur-
sive. The way to change the function so that it will be tail-recursive is to add a
parameter. Write the following function so that the recursive call is tail recursive.

/** = x + (sum of integers in the range 0..n), for n ≥ -1 */
public static int sum(int x, int n)

6. Rewrite the function of the previous exercise to eliminate the tail-recursive
call using the technique of Sec. 15.3.4.

7. Implement the inefficient function to calculate Fibonacci numbers (see Sec.
15.2.3) and calculate some Fibonacci numbers to see how long it takes. Try calls
like Fib(10), Fib(20), Fib(30), ... until you get some sense of how inefficient
this function is.

8. Function fib of the previous exercise is extremely inefficient, requiring time
proportional to Fn to calculate fib(n). The way to get a more efficient function
is to add parameters to the function, as illustrated below. Write the function body.
Make sure that any recursive calls are tail recursive.

/** = Fn, for 0 < n, given that 1 ≤ k ≤ n, a = Fk, and b = Fk-1 */

public static int FibLinear(int n, int k, int a, int b)

9. In Exercise 8, you wrote a function whose only call is tail recursive. Use the
method of Sec. 15.3.4 to eliminate the tail-recursion from that function.

10. Write a recursive boolean function that tells whether a String contains a
blank.

11. Write a recursive function removeDups that removes duplicate adjacent

Exercises for Chapter 15 431

characters from a String. For example, removeDups("baaaccd") = "bacd".

12. Write a recursive function that tells how many blanks a String has.

13. Write the following function; the recursive case should involve substring
s[1..]:

/** = the reverse of s. For example, srev("abc") is "cba" */
public static String rev(String s)

14. The previous exercise results in a function that has a recursive call that is not
tail-recursive. The way to make it more efficient is to add an extra parameter.
Write the following function, making sure that recursive calls are tail recursive:

/** = (the reverse of s) + t */
public static String tailrev(String s, String t)

15. In the previous exercise, you wrote a function to reverse a String whose
only call is tail-recursive. Use the method of Sec. 15.3.4 to eliminate the tail-
recursive call from that function.

16. Write the following linear search procedure, using recursion (no loops):

/** Return the int i that satisfies
(0) x is not in b[0..i-1] and
(1) x = b[i] or i = b.length */

public static int linearSearch(int[] b, int x, int h)

17. This exercise asks you to implement the binary search algorithm of Sec.
8.5.3 recursively. Write the body of the following function:

/** = an integer i that satisfies b[h..i] ≤ x < b[i+1..k] */

public static int binarySearch(int[] b, int x, int h, int k)

18. A palindrome is a String that reads the same backward and forward. Write
the following function. The way to think about it is to understand that s is a
palindrome if its first and last characters are the same and the substring between
them is a palindrome. By definition, a string of length 0 or 1 is a palindrome.

/** = "s is a palindrome" */
public static boolean isPalindrome(String s)

18. Write a recursive function (no loops) to computer gcd(x, y), where x > 0

and y > 0. The gcd(x, y) is the greatest common divisor of x and y: the largest
integer that divides both of them. Your recursive function can use (only) these
properties of gcd:

Turn to lesson
page 15.3 for
an astonishing
palindrome.

432 Chapter 15 Recursion

• gcd(x, x) = x

• For x > y, gcd(x, y) = gcd(x - y, y)

• For y > x, gcd(y, x) = gcd(x, y - x)

19. Turn to lesson page 15-1 of the ProgramLive CD and click the project icon.
You will see a project called Link extractor. This project is to build a Java appli-
cation that produces a list of all links on a website. A recursive procedure is used
to process the graph of web pages that are reachable from a given root. Do this
project.

20. Recursive procedures are great for drawing geometric shapes that are repeat-
ed and drawn at increasingly smaller scales. Such shapes are called fractals. One
example of a fractal is the Koch snowflake, due to a Swedish mathematician
Helge von Koch. In the diagram on the left below is a Koch snowflake of order
0, an equilateral triangle.

The middle figure is a Koch snowflake of order 1. In each of the lines in the
order-1 snowflake, the middle third of the line has been replaced by two sides of
an equilateral triangle. In the order-2 snowflake on the right, again, the middle
part of each line of the order-1 triangle has been replaced by two sides of an equi-
lateral triangle. This process can go to any depth.

Write a procedure to draw a Koch snowflake of order k. You will have to put
this procedure in a class that has a method paint —either a subclass of JFrame
or a JPanel. Your instructor will give you details on this.

Here is the specification of the snowflake procedure.

/** Draw Koch line of order k (≥ 0) from (x1, y2) to (x5, y5) using g.
*/

public void drawFlakeLine(int k, int x1, int y1,

int x5, int y5, Graphics g)

For k = 0, the Koch line is simply a line from (x1, y2) to (x5, y5).
For k > 0, the Koch line is 4 Koch lines of order k - 1, drawn as shown here:

Let dx = x5 - x1, dy = y5 - y1, and p = sqrt(3.0) / 6. Then:

(x1,y1) (x2,y2)

(x3,y3)

(x4,y4) (x5,y5)

Exercises for Chapter 15 433

point (x2, y2) is (x1 + dx / 3, y1 + dy /3).
point (x4, y4) is (x1 + 2 * dx / 3, y1 + 2 * dy / 3).
point (x3, y3) is ((x1 + x5) / 2 + p * (y1 - y5),

(y1 + y5) / 2 + p * (x5 - x1)).

Points (x2, y2) and (x3, y3) are easy to figure out. The calculation of (x3,
y3) is harder; it rests on trig and the fact that all four lines are the same length.

Once procedure drawFlakeLine is written, we suggest that you put it in a
subclass of JFrame or JPanel along with static constants that give the coordi-
nates (xtop,ytop), (xleft, yleft), (xright, yright) of an equilateral tri-
angle and a variable K and then write this method paint:

/** Draw a Koch snowflake of order K by drawing three Koch lines of order
K from (xtop, ytop) to (xleft, yleft), (xleft, yleft) to
(xright, yright), and (xright, yright) to (xtop, ytop) */

public void paint(Graphics g)

Figure out suitable values for the points of the main equilateral triangle by exper-
iment.

434 Chapter 15 Recursion

Chapter 16

Applications and Applets

OBJECTIVES

INTRODUCTION

There are two ways to make a set of Java classes into a unit that can be used else-
where. The first is to build an application, which generally resides on your com-
puter and can be executed when you want. The second is to build an applet, which
can be called when a browser loads an html page.

16.1 Java applications

A Java application is a bunch of classes (in .java files) in which (at least) one
class has a method main of the following form:

/** Called by system to start execution of the Java application */

public static void main(String[] args) { … }

The system calls method main to start execution of the program. The param-
eter, a String array, can contain information that the application uses when exe-
cution starts. The parameter is rarely used, and we will not discuss it further. So
if you do not know about arrays, it does not matter.

In DrJava, there is no need for this method main because any static method
in a compiled class, as well as any instance method of an accessible folder, can
be called in the Interactions pane. But in other IDEs, method main is necessary,
and you may have to tell the IDE which class contains method main. Each IDE
has a different way to do this.

Activity
1-2.1

• See how to make a set of classes into a Java application.
• See how to make an application into an executable file.

• See how to write an applet and put it on an html page.

If you are using an IDE and you have told it which class has method main,
any time you run the program, execution starts by calling method main.

Executing a Java program from the command line
In a DOS window or a command-line window, navigate to a directory that

contains a file Name.java (say) that:

1. Has a static procedure main with one argument that is a String array.
2. Has been been compiled, so that there is a file Name.class.

Then, the following command executes a call to method main of class java.
Name. The command should not include the suffix .class or .java.

java Name

16.2 Stand-alone applications

A Java application may consist of many classes. If you want to give someone an
application, you have to give them all the .class files. That can be messy. Better
is to put the application in a single file that can be executed easily, perhaps by
double-clicking on its icon. You do this by making a jar file of the classes. Jar
stands for Java ARchive —after tar files (TapeARchives) on Unix systems.

To make a jar file with name app.jar, open a DOS or command-line win-
dow and navigate to the directory where the .java and .class files are. Type in
the following command (note: if command jar is not available, you will have to
change your path. See the end of this Sec. 16.2):

jar -cf app.jar *.class

The “c” in -cf is for create. The “f” is for file, and it indicates that the name
of the file to create follows, in this case, app.jar. The “*.class” is expanded
to name all the .class files in the directory. So, this command makes up a jar
file named app.jar, which contains all the .class files in the directory.

You still have to insert into the jar file something that tells it which class has
method main. Suppose it is class CMain. Then do the following:

(a) Make up a file x.mf that contains one line of text:

Main-class: CMain

The suffix on x.mf stands for manifest. Make sure you hit the enter key after typ-
ing the text in the file because it must have a carriage-return or line-feed in it.
You can create file x.mf in wordpad, notepad, DrJava, or any editor you want.
Make sure the file is in the same directory as file app.jar.

436 Chapter 16 Applications and applets

Manifest. A manifest is a list of passengers or an invoice of cargo for a ship. The meaning has
been generalized to a description of the contents of something, e.g. a jar file.

(b) Type in this command in the terminal window:

jar -umf x.mf app.jar

The “u” stands for update, the “m” for manifest, and the “f” for file. Since the
“m” precedes the “f”, the manifest file name, x.mf, precedes the file name,
app.jar. This command inserts into jar file app.jar the fact that method main
appears in class CMain.

You can insert the classes and the main-class manifest in one step using:

jar -cmf x.mf app.jar *.class

You can now email file app.jar to anyone, and they can run it on their com-
puter, whether it is a Unix, Macintosh, or Windows system, as long as their sys-
tem runs java. To execute the program, type this (include the extension .jar):

java -jar app.jar

In some systems, you will be able to run the program by double-clicking the file.
If you want to see what is in jar file app.jar, then type this:

jar tvf app.jar

You can find out more about the jar command by typing the following and hit-
ting the enter/return key:

jar app.jar

Variable path
If you cannot execute any of the commands java, javac, jar, and javadoc,

then you probably have not set your path correctly. We explain this for Windows
2000; older windows systems are similar.

Your system contains a variable that lists directories that have executable
files in them. Type path in a command-line window. A line will be printed that
contains path names separated by semicolons. For example, one path name may
be:

C:\WINNT\system32

There should be a path that looks something like this:

C :\j2sdk1.4.1_02\bin

This is a directory called bin inside the directory where you installed the sdk. It
may be different on your computer. If such a path is not there, you have to add
it. Bring up the help in your Windows system, open the index, and look for path.
There, you will find instructions on appending another directory to variable
path. It may be something like the following, but read the instructions:

path %path%;C:\j2sdk1.4.1_02\bin

16.2 Stand-alone applications 437

16.3 Java applets

A web page is written in a language called html, which stands for HyperText
Markup Language. Web pages can contain applets, which are Java programs
written in a special way. In this section, we show you how to write an applet. In
Sec. 16.4, we discuss html and show you how to put an applet in a web page.

An applet is a Java class (together with other classes that it uses) that is a
subclass of class java.applet.Applet. Class JApplet, in package javax.swing,
is a subclass of Applet, and people prefer to use JApplet rather than Applet.

Class Applet (and therefore JApplet) has the five procedures listed below,
which are inherited in any subclass. The procedures have empty bodies and can
be overridden.

1. paint(Graphics g): called to paint the applet’s panel
2. init(): called to initialize the applet
3. start(): called to tell the applet to start processing
4. stop(): called to tell the applet to stop processing
5. destroy(): called to tell the applet to terminate its activities

The structure of an applet computation
When a browser loads a page that contains an applet, it starts the applet with

these two calls:

init(); start();

Procedure init is supposed to initialize the applet, and procedure start is
supposed to start any computation that the applet has to perform.

The browser also calls method paint to paint the applet; it will do so when-
ever it believes that the applet window needs painting.

If the browser window becomes hidden, perhaps because the user dragged
another window in front of it or the user clicked the back button to bring up the
previous page in the browser, the browser immediately calls method:

stop();

of the applet. This method is supposed to stop any computation that it is doing
so that resources are not wasted. When the browser window becomes visible
again, procedure start will be called again.

When the browser window is deleted, the browser calls:

destroy();

This procedure is supposed to relinquish any resources that the applet was using.
For example, it could close a file from which it was reading or terminate any dif-
ferent “threads of execution” that it had started.

The use of different resources is outside the scope of this book. Hence, in
this chapter, we do not discuss methods start, stop, and destroy. Below, we
concentrate on using procedures paint and init.

Activity
16-1.3

Activity
16-1.2

438 Chapter 16 Applications and applets

A simple applet
Below, we show an an applet that paints text and a line. Figure 16.1 shows

the applet as displayed in a browser window —it is the grayed rectangular area.
You have seen procedure paint before in other contexts. For a discussion of this
procedure, see activity 1-5.5 of the CD.

public class Apple extends JApplet {

public void paint(Graphics g) {

g.drawString(" Hello World! ", 30, 30);

g.drawLine(30 - 2, 30 + 2, 30 + 70, 30 + 2);

}

}

An applet to sum two numbers
The applet shown in Fig. 16.2 prompts the user for two floating-point num-

bers and then prints their sum in the applet panel. The applet does this only once
because the statements that perform the request appear in init and not in paint.

Initially, the applet panel is blank. The first statement in method init calls
method showInputDialog of class JOptionPane, which is in the Swing pack-
age. See Sec. 17.5.1. This method displays a dialog window on the screen, which
contains the argument of the call and a text field. The user is expected to type a
number and hit the return key or press button OK. When this has been done, the
window disappears, and the number that was typed is returned as the value of the
function call. In this case, the value is stored (as a String) in variable num0.

In the same way, the next statement displays a dialog window and stores the
number that the user types into variable num1. Method showInputDialog makes
it easy to obtain input from users.

Activity
16-3.2

Get this applet
from a footnote
on lesson page
16-3.

Activity
16-1.2

16.3 Java applets 439

Figure 16.1: An applet to demonstrate procedure paint

The values in num0 and num1 have to be converted to type double. This is
done using static function Double.valueOf to convert a String to a value of
wrapper class Double and then function doubleValue to yield the value as a
double. The final statement stores the sum of the two values in variable sum.

Method paint is called only after init and start have finished, and inher-
ited method start does not do anything. Method paint is straightforward. It just
draws a rectangle that surrounds the text and writes the text.

An applet to paint a clock
Activity 16-3.1 discusses an applet that draws a clock on the screen. The

clock is interesting because every time the clock is repainted, it obtains the time
from the time on the clock on your computer. So, if you do anything to cause the
system to call method paint, like resize the window, the clock is updated. The
applet obtains the default Locale on your computer (see Sec. 5.5.2) and uses it

Activity
16-3.1

Get this applet
and the next
from a footnote
on lesson page
16-3.

440 Chapter 16 Applications and applets

import java.awt.*;

import java.util.*;

import java.applet.*;

import javax.swing.*;

/** An applet that requests two double values from the user and prints their sum */

public class Summing extends JApplet {

private double sum; // the sum of the two values

public void init() {

String num0; // First number, entered by user
String num1; // Second number, entered by user
double number0; // First number, as a double
double number1; // Second number, as a double

// Read in first and second numbers
num0= JOptionPane.showInputDialog("Enter first floating-point value");

num1= JOptionPane.showInputDialog("Enter second floating-point value");

// Convert the two numbers to type double and add them
number0= Double.valueOf(num0).doubleValue();

number1= Double.valueOf(num1).doubleValue();

sum= number0 + number1;

}

/** Write the results using g */

public void paint(Graphics g) {

g.drawRect(10,10,120,20);

g.drawString("The sum is " + sum, 20, 25);

}

}

Figure 16.2: An applet to sum two numbers

to obtain an instance of GregorianCalendar, which describes the time at which
the instance was created in the Gregorian calendar —the calendar we use today.

We do not describe the applet in this text because it would require several
pictures and a lot of text. We advise you to watch activity 16-3.1.

16.4 HTML and the web

HTML stands for HyperText Markup Language. Html is the language in which
web pages are written. We explain the basics of html, using as an example the
web page of Fig. 16.3, whose source file appears in Fig. 16.4. As you read this
section, continually refer to these two figures.

The name of an html file usually has the suffix .html or .htm.
An html page consists of conventional text interspersed with html tags. An

html tag consists of a command, possibly with arguments, within angle brackets
< and >. As an example, every html page begins with the tag <html> and ends
with the tag </html> Most tags come in pairs: one tag <xxx ...> to start some-
thing and one tag </xxx ...> to end it. The tags commands are case-insensitive;
the tag <html> could have been written as <HTML> or <HtMl>.

The language html is also insensitive to whitespace (blanks, tabs, end of
lines) in that several whitespace characters in a row are treated as one blank char-
acter. Thus, in an html file, you may see several blank lines, or 20 blanks at the
beginning of a line, but they play the same role as a single blank in determining
how the html page is formated. Therefore, you can use indentation and blank
lines to help exhibit the structure of an html page, just as you do in Java.

If you want to place three blanks in a row on a web page, use the escape
sequence for each blank.

Between the tags <html> and </html> one generally finds two other pairs:

<head> ... </head>

<body> ... </body>

The material between the head-tags can contain various things, such as a title:

<title> A web page </title>

Within the two body-tags is the text that appears in the browser window,

Activity
16-2.1

16.4 HTML and the web 441

Figure 16.3: A web page

interspersed with various html formatting tags. For example, a new paragraph is
begun with the tag <p>. The ending tag </p> is optional.

We describe a few of the formating tags-pairs that are used in html:

• ... The text between the tags should be
red. This is the first tag that you have seen with an argument: In html, an
argument is given by a parameter name, the = sign, and the argument
value for that parameter. Java uses a positional scheme for giving argu-
ments: the first argument is associated with the first parameter, etc. Html
uses a naming scheme: parameter=argument. Therefore, the arguments
can appear in any order. Arguments are sometimes called attributes.

• ... The same font-tag pair as above, but
with a different argument, which increases the point size of the material
between the tags by 1.

• ... Put the text between the tags in boldface.

• <i> ... </i> Put the text between the tags in italics.

• <u> ... </u> Underline the text between the tags.

•
 Practically the only tag without a corresponding closing tag. It
gives a line break, or new line character.

The hyperlink
Surely, you have browsed web pages by clicking on a blue underlined

442 Chapter 16 Applications and applets

<html>

<head><title>A web page</title>

</head>

<body>

A web page is written in HTML

<P>Here’s some red text</p>

Here's a different point size

and boldface

<i>and italics

<u>and underline</u><i>

<p> Here's

a link to

Paul Gries's home page at Toronto

</body>

</html>

Figure 16.4: The source html page for Fig. 16.1

phrase, causing the browser to load another page. We explain how this works.
Consider the tag pair:

Amazon's page

Parameter href of tag <a> has as argument the URL (Uniform Resource Locator)
of the page that is to be loaded. Generally, the text between the commands is blue
and underlined, and clicking it loads the page at the given URL. That is all there
is to implementing a hyperlink in a web page!

The applet tag
Here is an example of an applet tag (and its ending partner), which can be

placed in an html page:

<applet code = "Apple.class" width=100 height=200>

your browser will not run this applet! </applet>

Parameter code has as its corresponding argument the name of a .class file
that resides in the same directory as the html page in which the applet tag occurs.
This .class file is the compiled version of a .java file that is a subclass of class
Applet (in package java.applet). In addition, the applet tag has arguments that
give the width and height (in pixels) of the rectangle that will appear in the
browser page. We looked at class applet in Sec. 16.3.

When the browser opens the web page, the Java applet given in file Apple.
class is executed. But not all browsers can run applets. A browser that cannot
will instead display the text that appears between the applet and /applet tags.

If the Java .class files that make up the applet appear in another folder,
even on a different computer, the URL of that folder should be given in a code-
base argument. For example, suppose an IDE places the .class files in a fold-
er named Java Classes. Then, use this applet tag, which uses a URL that is rel-
ative to the folder in which the html file appears:

<applet code = "Apple.class" width=100 height=200

codebase = "Java Classes">

Sorry, this browser does not do applets </applet>

Any URL can be used to give the codebase, even one that refers to a folder
on a different computer.

Specifying a jar file
An applet may consist of many .class files. If this applet is on another

computer, each .class file must be obtained by sending a message to that com-
puter to deliver it. Requesting and retrieving individual files in this manner is rel-
atively time consuming —each could take several seconds or more. To overcome
this problem, jar files were introduced —see Sec. 16.1.

An archive argument is used in an applet tag to specify that a jar file is
available. For example, to indicate that the .class files are in file Apple.jar,

Activity
16-2.2

16.4 HTML and the web 443

place the following archive argument in the applet tag:

archive = "Apple.jar"

Now, only one file has to be retrieved instead of many.
We have neglected to talk about passing parameters to the applet through the

applet tag. See any html manual for a complete discussion of applet tags.

Concluding remarks
There are many more html tags, for example for linking to images and set-

ting tables of data, but they should not be hard to learn.
A word of caution in using html the way we have shown. The trend is to

eschew tags like , , <i>, and <u> and to use styles instead —this is not
the place to explain styles. For now, there is nothing wrong with trying to write
a few web pages using the commands we have described simply to get a feel for
how html works.

Several software applications can help you write html pages without actual-
ly requiring you to look at the source html. Netscape Communicator is perhaps
the simplest and is useful when one or two web pages have to be written. When
a large web site is to be designed and implemented, one often use Macromedia’s
DreamWeaver or Microsoft’s FrontPage.

Security with applets
Security is an important topic, given the current rash of attempts to break

into and destroy people's web sites and computers. Lesson page 16-2 of
ProgramLive contains a footnote that explains why applets are safe.

16.5 Key concepts

• Java application. An application is a set of Java classes in which some class
has a static procedure main, with a single parameter of type String[].

• Jar file. A java application can be packaged in a jar file as a stand-alone appli-
cation. It can then be executed with the jar command or by double clicking on it.

• Java applet. An applet is a Java class that is a subclass of class Applet. The
subclass can override inherited procedures paint, init, start, stop, and
destroy in order to have the applet do something. Use class JApplet (which is
a subclass of Applet) in the Swing package, instead of Applet.

• Html and the applet tag. Html (HyperText Markup Language) is the language
in which web pages are written. An applet can be included on a page using the
applet tag. For efficiency, the classes that make up an applet can be placed in a
jar file.

444 Chapter 16 Applications and applets

Chapter 17

GUIs

OBJECTIVES

INTRODUCTION

GUI stands for Graphical User-Interface. GUIs consist basically of windows on
your monitor that you use to communicate with an application. In this chapter, we
introduce the basics for constructing GUIs in Java programs. The web page for
this lesson on the CD contains links to tutorials on GUIs and to the API specs for
the Java packages that deal with GUIs.

The basic classes for constructing a GUI are in package java.awt (abstract
window toolkit) and in the newer package javax.swing, called the Java
Foundation Classes (Swing, for short). The names of many (but not all) classes
in package javax.swing are the names of their counterparts in package java.-
awt but preceded with a J. For example, Button is an awt class and JButton is
the corresponding Swing class.

The classes in javax.swing provide more flexibility and function than those
in java.awt. The components in javax.swing are lightweight, while those in the
awt are heavyweight (these terms are explained in Sec. 17.2.6). When possible,
use the Swing classes.

Throughout this chapter, we explain and then summarize basic GUI methods.
There are other methods that we do not have space to discuss. Get in the habit of
perusing the specs so that you have some idea about how the GUI classes are
structured and some familiarity with their methods.

Further, the ProgramLive CD contains far more material, with pictures and
diagrams in color, than we can cover here. Watching the CD, rather than just read-
ing this chapter, will be more informative as well as more enjoyable.

You can obtain source files for all programs in this chapter from the CD.

All the exam-
ple programs
used in this
chapter can be
obtained from
the first foot-
note on lesson
page 17-1.

• Introduce Java classes for creating Graphical User Interfaces.

• Learn to think of a program as responding to events.

446 Chapter 17 GUIs

17.1 JFrames

17.1.1 The basics of JFrames

As you know from Chap. 1, an instance of class JFrame is a window that can
appear on your monitor (See Fig. 17.1). The window has two visible parts: the
border and the content pane. The border contains the title bar and resize control
(in the lower right corner). The title bar contains the title and the usual maximize,
minimize, and close buttons. The content pane contains GUI components such as
buttons, scrollbars, and text areas —whatever the program has placed on it.

Creating a JFrame
The first statement below declares a variable jf and assigns to it the name

of a new instance of class JFrame , with title "example". The JFrame window is
initially not visible. The second statement, jf.pack(), tells the JFrame to “lay
out” all the components that have been placed in it. The third statement makes
the window visible. (The JFrame of Fig. 17.1 has no components.)

JFrame jf= new JFrame("example");

jf.pack();

jf.setVisible(true);

You can set the size and location of the window. Statement

jf.setSize(200, 70);

changes the window to a width of 200 pixels and a height of 70 pixels.
Statement:

jf.setLocation(60, 30);

moves the window so that its top left corner is at horizontal pixel 60 and vertical
pixel 30. To retrieve the current width and height of jf, use function calls:

jf.getWidth() and
jf.getHeight()

To retrieve the position of the top-left corner, use function calls:

jf.getX() and
jf.getY()

Activity
17-1.1

Figure 17.1: A JFrame

Preventing the user from resizing the window
Generally, the user can use the resize control to change the size of the win-

dow. To prevent such resizing, use method call:

jf.setResizable(false);

The close button
The close button can have various behaviors. The default behavior is to hide

the window. Method call jf.setVisible(true); makes it visible again. You
can change the action that is connected to the close button using the call:

jf.setDefaultCloseOperation(argument) .

There are four possible values for the argument, all constants of class Window-
Constants. Each provides a different effect when the close button is pressed:

Argument Action when pressing the button
DO_NOTHING_ON_CLOSE Nothing.
HIDE_ON_CLOSE Hide the window.
DISPOSE_ON_CLOSE Dispose of the window.
EXIT_ON_CLOSE Exit program by calling System.exit(0);

Using a subclass of JFrame
We can define subclass BasicFrame of JFrame, with a suitable constructor,

and place initializing statements in the constructor of the class. Other program-
mers using class BasicFrame will usually want to set the location themselves,
delay showing the window, or alter the contents of the window. Therefore, calls
to setVisible and setLocation are usually left to the user of the subclass.

public class BasicFrame extends JFrame {

/** Constructor: a non-visible instance with title t */
public BasicFrame(String t)

{ super(t); pack(); }

}

17.1 JFrames 447

Figure 17.2: JFrame with a BorderLayout

An instance of this JFrame can then be created and made visible as follows:

BasicFrame bf= new BasicFrame("example");

bf.setLocation(50, 100);

bf.setVisible(true);

17.1.2 Placing components in a JFrame

A component is an object that can be placed in some window, like a JFrame.
Figure 17.2 shows a JFrame with five components, which we describe momen-
tarily. That window is an instance of class ComponentExample of Fig. 17.3,
which extends JFrame. Besides a constructor, this class has a method main,
which creates an instance of the class and makes it visible.

There must be some means to place components in a window. In the Java
GUI system, this is done using a layout manager. A JFrame uses an instance of
class BorderLayout as its layout manager, and in a JFrame, the components are
placed in its content pane. That is why the second statement of the constructor of
ComponentExample retrieves the content pane and stores it in variable cp.

When using a BorderLayout manager, the content pane has five areas:
north, south, east, west, and center. Each area can contain one GUI component.

Get the class of
Fig. 17.2 from
lesson page 17.1

Activity
17-1.2

448 Chapter 17 GUIs

import javax.swing.*;

import java.awt.*;

/** Place components in a JFrame using default layout manager BorderLayout. Components
in the 5 possible positions are: a JButton, two JLabels, a JTextField, a JTextArea. */

public class ComponentExample extends JFrame {

/** Constructor: a hidden window with title t and five components */
public ComponentExample(String t) {

super(t);

Container cp = getContentPane();

cp.add(new JButton("click me"), BorderLayout.EAST);

cp.add(new JLabel("label 1"), BorderLayout.SOUTH);

cp.add(new JLabel("label 2"), BorderLayout.WEST);

cp.add(new JTextField("type here", 22), BorderLayout.NORTH);

cp.add(new JTextArea("type\nhere", 4, 10), BorderLayout.CENTER);

pack();

}

public static void main(String[] args) {

ComponentExample be = new ComponentExample("Placing components");

be.setVisible(true);

}

}

Figure 17.3: A subclass of JFrame with five components

Each of the calls cp.add(…) in the constructor places a component (the first
argument of the call) in one of these five areas; the second argument, a constant
of class BorderLayout, says where to put it. The diagram below shows the five
areas of the content pane when using a BorderLayout manager.

.......NORTH.......

WEST CENTER EAST

.......SOUTH.......

The east contains a JButton (see Fig. 17.2). The argument of the call to the
JButton constructor is the text to display on the button. Section 17.4 discusses
how to make your program respond to a button click.

In the south and west of the content pane are JLabels, which are one-line
display areas for text strings and images. Again, the argument of the constructor
is the text to display. JLabels do not respond to mouse clicks or other events.

In the north is a JTextField, which is a one-line area into which the user
can type. The constructor arguments are the initial text of the text field and the
approximate width of the text field, in characters.

In the center is a JTextArea, which is a multi-line typing area. The con-
structor arguments are the initial text of the text area, the number of lines to dis-
play, and the approximate width of the text field, in characters.

Discussion
Basically, that is all there is to placing components in a JFrame. You do not

have to add a component in each area. For example, if no component is placed
in the east, the east part takes up no room.

Method pack of the constructor causes the components in the window to be
resized to fit together, using the “preferred sizes” of the components. If pack is
not called, the sizes of the components are unpredictable.

Even in the packed version, the center text-area is much wider than ten char-
acters! This is because the north text field is so wide; the content pane is layed
out so that each component gets at least as much room as it requested.

In the next section, we describe most of the kinds of components that can be
placed in a JFrame.

Some older programs use the old class Frame of package java.awt instead
of JFrame. (Actually, JFrame is a subclass of Frame.) In a Frame, the compo-
nents are added to the JFrame, and not to its content pane, so local variable cp
and the prefix “cp.” on all calls to add would be removed.

17.2 Components

We give details about frequently used components, each of which is a subclass
of class JComponent. To learn how to “listen” to a component, for example, to
respond to a click of a mouse, see Sec. 17.4.

Activity 17-1.2
shows what the
JFrame looks
like if it is not
packed.

17.2 Components 449

17.2.1 JButtons

As shown in Fig. 17.3, an instance of class JButton is a component that can be
placed in a JFrame. The creation of a new JButton is easy; the argument of the
constructor in a new-expression is the string to be displayed on the button, e.g.:

new JButton("Yeeaaah")

JButton is a subclass of the older class Button of package java.awt, and
you can create Buttons as well:

new Button("Nyaaaah")

and place them in the content pane of the JFrame.
A JButton and a Button look slightly different, as you can see in a foot-

note near the top of lesson page 17.2.

17.2.2 JLabels, JTextFields, JTextAreas

Putting labels into a JFrame
An instance of class JLabel is a component that is a short text, an image, or

both. In this text, we deal only with JLabels that are text. As you know from Sec.
17.1, the argument of a JLabel constructor is the text that is to be displayed.
Here is an example:

JLabel label= new JLabel("top label");

If a window is resized by dragging, as activity 17.2.2 shows, a label may be
partially obscured. Of course, you can drag to make the window bigger.

Retrieve and change the text in a label using getText and setText, e.g.

String s= label.getText();

label.setText("new text");

Labels are left-adjusted by default, but you can center or right-adjust them.
For example, use this call to right-adjust the label:

label.setHorizontalAlignment(SwingConstants.RIGHT);

The constants of class SwingConstants that can be used as the argument
are: LEFT, CENTER, RIGHT, LEADING, and TRAILING.

Change the vertical alignment using a call like the following. Possible argu-
ments are these constants of SwingConstants: TOP, CENTER, and BOTTOM.

label.setVerticalAlignment(SwingConstants.TOP);

Putting text fields into a JFrame
An instance of class JTextField is a component that is a one-line field into

which the user can type text. It is often called simply a text field. An example of
a JTextField appears in the north part of the content pane of Fig. 17.2.

Activity 17-2.2

Get a class that
creates labels
from a footnote.

Get a class that
creates buttons
from a footnote
on 17.2.

A footnote on
top of lesson
page 17.2 gives
more detail.

450 Chapter 17 GUIs

Here is an example of the creation of a text field and its placement in the
center of the content pane of JFrame jf:

JTextField field= new JTextField("a text field", 11);

jf.getContentPane().add(field, BorderLayout.CENTER);

The first statement stores in field an instance of JTextField. The two argu-
ments of the constructor call are the initial value of the text and the number of
columns. The number of columns is only an approximation to the number of
characters because characters have different widths. JTextField has other con-
structors; look them up in the API.

There are many methods for dealing with text fields. We discuss some of
them below. Most of these methods are called in response to the user doing
something in the GUI, like clicking a button with the mouse. You can create a
JFrame with a text field on it in DrJava’s Interactions pane and then experiment
with these methods, with calls in the Interactions pane. So you do not have to
wait until we discuss handling events before seeing the methods in action.

Making the text field uneditable
A text field is editable —the user can type in it. To make is uneditable, exe-

cute the method call:

field.setEditable(false);

To make field editable again, call the same function with argument true.

Playing with the text
Retrieve the text from the field using String function getText(). You can

also retrieve just part of the text using a two-argument getText. For example,
the following statement stores in s the substring field[start.. start+len-1]
—that is, the len chars of text field field, beginning at position start:

String s= field.getText(start, len);

Change text field field to contain a string s using setText:

field.setText(s);

17.2 Components 451

The size of a component. A JComponent has minimum, preferred, and maximum sizes. A layout
manager tries to place a component using its preferred size, but its size will
never be less than the minimum or more than the maximum.

In most situations, you do not have to deal with the size. But when a GUI
does not look right, you may have to change the preferred size. Look at the API
specs for JComponent, or look at activity 17-2.4 on sliders.

We found two places where it was necessary to change the preferred size
of a component: (1) in using a particular slider and (2) in using a JPanel pure-
ly as a place to put graphics, without placing any components on it.

You can also append s to the text field or insert s at index i. The second
statement below changes text field field to field[0..i-1] + s + field[i..].

field.append(s);

field.insert(s, i);

Playing with the selection
The user may select, or highlight, part the text in the text area. Your program

can retrieve the selected text using the first statement shown below. Your pro-
gram can also change the highlight. The second statement below selects or high-
lights all the text, while the third statement selects only field[i..j-1].

String selected= field.getSelectedText();

field.selectAll();

field.select(i, j);

Playing with the number of columns
Getter method getColumns() and a corresponding setter method exist, so it

is possible to change the size of the text field while the program is running. If the
size is changed, the JFrame should be packed again.

Putting text areas into a JFrame
An instance of class JTextArea is a two-dimensional field of editable text,

called simply a text area. A JTextArea is shown in Fig. 17.2. That text area has
a significant problem in that if too much text is placed in it —either long lines or
too many lines— it will be difficult for the user to use. It would be better if the
text area had scroll bars on it.

Below, we show code to create a text area with scroll bars and place it in the
center of JFrame jf —the scroll bars appear only if needed.

JTextArea area= new JTextArea("012345678\nabc", 5, 11);

JScrollPane scrollPane= new JScrollPane(area);

jf.getContentPane().add(scrollPane, BorderLayout.CENTER);

Activity 17-2.2

Get a class that
creates labels
from a footnote.

452 Chapter 17 GUIs

Figure 17.4: Two snapshots of a JFrame with a JTextArea

The first statement stores in area an instance of JTextArea. The three arguments
of the constructor call are the initial value of the text, the number of rows, and
the number of columns. There are other JTextArea constructors; look them up
in the API.

The second statement creates a scroll pane around text area area. The third
statement adds the scroll pane, and with it the text area, to the center of the con-
tent pane.

Figure 17.4 contains, on the left, JFrame jf with a single component as cre-
ated by the code above, as it appears in OS X on the Macintosh. To the right in
Fig 17.4 is the same text area after three more characters have been typed by the
user into the first line of the text area, causing the scroll bars to appear.

A JTextArea has several methods that can be used to manipulate it. Below,
we describe some of them.

Playing with the text
Class JTextArea has the same methods as JTextField for retrieving and

setting the text, making the text area editable or not, retrieving the selected text,
and selecting a portion of the text, so we do not explain them here.

But note this: Even though the text area appears to be two-dimensional, from
the internal view it is simply a String with new-line characters '\n' in it. Thus,
your program will probably have to do more to process the retrieved text than it
would to process the text of a text field.

Playing with the number of rows and columns
Getter methods getColumns() and getRows() and corresponding setter

methods exist. So it is possible to change the size of the text area while the pro-
gram is running. If the size is changed, the JFrame should be packed again.

Text wrapping
The default in a text area is not to wrap text. So, when the user types in a

text area, the scroll bar adjusts to show the portion that contains the cursor where
characters are being typed. However, you can set the text area to wrap the text
using the method call:

area.setLineWrap(true);

Now, when the cursor goes past the right end of the text area, automatically
the next characters are placed on the next line. When wrapping, the default is to
wrap at character boundaries. Execute the following method call to wrap at word
boundaries instead:

area.setWrapStyleWord(true);

17.2 Components 453

17.2.3 Other components

Sections 17.2.1 and 17.2.2 describe the basic components that are used in GUIs:
buttons, labels, text fields, and text areas. A number of other components can be
placed in a JFrame. We list their classes here and summarize what each is.

• JSlider: A bar with a tab, which the user can move.
• JCheckBox: A titled box, which the user can check or uncheck.
• JRadioButton: a titled circle, which the user can check or uncheck.
• JComboBox: A menu of items; the user selects one, which is then shown.
• JList: A list of items, all showing (if possible); the user selects items.
• JColorChooser. An instance allows the user to choose a color. It is fun!

In addition, a class ButtonGroup can be used to group a bunch of JRadio-
Buttons so that only one can be selected at any time. Select one, and the others
in the group become unselected.

Activity 17-2.4 shows how sliders are created and used, and each of the
other components listed above is described extensively in a footnote on lesson
page 17-2 of the CD. The illustrations are in color and far better than we could
do here, on paper. Further, from lesson page 17.2, you can obtain subclasses of
JFrame that have the components on them. The ProgramLive CD is the best
place to see examples of these components.

Lesson page 17-
2 describes bet-
ter all the com-
ponents men-
tioned in this
section. Also,
get sample clas-
ses from there.

454 Chapter 17 GUIs

import javax.swing.*;

import java.awt.*;

public class GraphicsPanelExample extends JPanel {

/** width and height of the panel and a color for painting the panel */

private int width;

private int height;

private Color color;

/** Constructor: a JPanel that is colored c and has width w and height h */
public GraphicsPanelExample(int w, int h, Color c) {

super();

color= c;

width= w;

height= h;

setPreferredSize(new Dimension(width, height));

}

public void paint(Graphics g) {

g.setColor(color);

g.fillRect(0, 0, width, height);

}

}

Figure 17.5: A JPanel that is painted a certain color

17.2.4 JPanels as graphics panels

Component class JPanel has an inherited procedure paint, which is used to
draw lines, rectangles, ovals, text, and the like using methods of class Graphics.
A JPanel can be added to a JFrame, just like any other component. The class
shown in Fig. 17.5 extends class JPanel, so its instances are components that can
be placed in a JFrame.

In the context in which this class GraphicPanelExample is expected to be
used, it will be used only for painting. Therefore, an instance of GraphicPanel
has to set its own size in the constructor, using method setPreferredSize.
Other than the call to this method, there is little new in this class.

Procedure paint in class GraphicPanelExample simply paints the whole
rectangle that makes up the component with color c. However, you can change
this procedure to draw whatever you wanted.

The subclass of JFrame that is defined in Fig. 17.6 illustrates the use of
JPanel components. The constructor creates three instances of GraphicsPanel-
Example and places them into the content pane of the JFrame. All three instances

A footnote on
lesson page 17-
2 discusses this
topic. Also, ob-
tain a copy of
the classes from
page 17-2.

17.2 Components 455

import java.awt.*;

import javax.swing.*;

public class GraphicsPanelExampleLay extends JFrame {

/** Constructor: a frame with title t and three GraphicsPanelExamples */

public GraphicsPanelExampleLay(String t) {

super(t);

JPanel cPane= new GraphicsPanelExample(50, 50, Color.pink);

JPanel ePane= new GraphicsPanelExample(80, 50, Color.green);

JPanel wPane= new GraphicsPanelExample(30, 50, Color.yellow);

Container cp= getContentPane();

cp.add(cPane, BorderLayout.CENTER);

cp.add(ePane, BorderLayout.EAST);

cp.add(wPane, BorderLayout.WEST);

pack();

}

}

Figure 17.6: A class with three JPanels

Figure 17.7: An instance of the class in Fig. 17.6

of GraphicsPanelExample have the same height, 50, but they have different
widths. An instance of this class is shown in Fig. 17.7, without colors.

17.2.5 Components versus containers

A container is an object that can contain displayable components. JFrame is an
example of a container, and JButton is an example of a component.

Some components are themselves containers, so one can create components
within other components. This provides a great deal of (needed) flexibility in cre-
ating GUIs.

Figure 17.8 contains a partial hierarchy of components in the GUI system.
In the case of Button and JButton, Button is in the old package java.awt and
JButton is in the new package javax.swing. There are many other such cases.

We have omitted many classes from the hierarchy, including layout man-
agers (like BorderLayout) and classes that deal with menus.

456 Chapter 17 GUIs

Component

Box, Filler, Button, Canvas

Checkbox, Choice

Label, List, Scrollbar

TextComponent

TextField, TextArea

Container

JComponent

AbstractButton

JButton

JToggleButton

JCheckBox

RadioButton

JLabel, JList

JOptionPane, JPanel

JPopupMenu, JScrollBar

JSlider

JTextComponent

JTextField, JTextArea

Panel

Applet

JApplet

ScrollPane

Window

Frame

JFrame

JWindow
Figure 17.8: Partial hierarchy of components and containers

17.2.6 Lightweight versus heavyweight

Skip this advanced topic on first reading.
You may wonder how a component is actually drawn on a window. Each

component in the old java.awt is associated with a “native” program —one
written in the machine language— that does the actual drawing. This native pro-
gram is called the component’s peer. Any component that has such an associat-
ed peer component is called heavyweight.

In the newer Swing package, the only heavyweight components are top-
level ones: JWindow, JFrame, JDialog, and JApplet. All the others, like JBut-
ton and JTextArea, are called lightweight because they do not have an associ-
ated peer. They rely on the objects in which they are placed —ultimately one of
the top-level components— to do the drawing for them. Since they do not have
associated peer programs, they are “lighter”.

In theory, you can mix lightweight and heavyweight components. In a light-
weight JPanel, for example, you should be able to place a heavyweight Button
and a lightweight JButton. But this mixing of components does not always work
well because the two kinds of components have different properties. Therefore,
if you have a choice, do not mix. Use components of the Swing package, wher-
ever possible, or stick completely to the old java.awt package.

Here are two differences between lightweight and heavyweight components:

1. A lightweight component can have transparent pixels, so you may see
whatever is underneath. A heavyweight component is always opaque.

2. Mouse events on a lightweight component fall through to its parent —the
container to which it was added. Mouse events on a heavyweight com-
ponent do not fall through.

There are other differences, but these should be enough for you to see why
mixing lightweight and heavyweight components might create inconsistency that
could lead to problems.

Sun’s web page for Java discusses lightweight versus heavyweight compo-
nents. The last time we looked, this issue was discussed at URL:

http://java.sun.com/products/jfc/tsc/articles/mixing/

17.2 Components 457

Figure 17.9: A JFrame with a four-button JPanel in the center

17.3 Containers and layout managers

Class JFrame is a subclass of class Container, which means that it can contain
components like buttons and labels. JFrame, with a BorderLayout manager,
may seem rather limited because it can contain only five components —in the
east, north, west, south, and center.

We introduce two other containers, the Jpanel and the Box, which have lay-
out managers FlowLayout and BoxLayout, respectively. Instances of JPanel
and Box can be added as components to a JFrame —or even to another JPanel
or Box. This nesting of containers allows us to construct a JFrame whose layout
is quite complex and that can contain any number of components.

There are other layout managers, e.g. CardLayout, GridBagLayout,
GridLayout, and OverlayLayout. We do not discuss them.

458 Chapter 17 GUIs

import java.awt.*;

import javax.swing.*;

/** An instance has labels in the north and south and a JPanel with four buttons in the center */

public class PanelDemo extends JFrame {

JPanel p= new JPanel();

/** Constructor: an invisible frame with title t, 2 labels, and a 4-button JPanel */
public PanelDemo(String t) {

super(t);

p.add(new JButton("0"));

p.add(new JButton("1"));

p.add(new JButton("2"));

p.add(new JButton("3"));

Container cp= getContentPane();

cp.add(new JLabel("north"),BorderLayout.NORTH);

cp.add(new JLabel("south"),BorderLayout.SOUTH);

cp.add(p,BorderLayout.CENTER);

pack();

}

}
Figure 17.10: Class PanelDemo

Putting borders around JComponents. This is an advanced topic. There is a way to put a bor-
der around any JComponent, like a JButton or a JPanel. You cannot put a bor-
der around a Box this way, but you get that effect by adding the Box as the only
component of a JPanel and then putting a border around the JPanel.

A footnote at the bottom of lesson page 17-3 of the CD shows you how to
put borders around JComponents and gives several examples.

17.3.1 JPanels and FlowLayout managers

A JPanel is a transparent Swing container used to group related components. As
an example, consider the JFrame in Fig. 17.9. It has a JPanel in the center and
JLabels in the north and south. The JPanel contains four buttons.

Figure 17.9 is an instance of class PanelDemo of Fig. 17.10. The class has a
field p, which is initialized to contain a JPanel. In the constructor, four buttons
are added to p, one by one, using procedure p.add. Unlike previous calls of pro-
cedure add, these calls have only one argument; we explain why later.

Next, the content pane of the JFrame is stored in variable cp, and the JPanel
and labels are added to the content pane. Finally, the JFrame is packed.

FlowLayout managers
Much like a JFrame's content pane, a JPanel is a subclass of Container, so

a JPanel can contain other components —four buttons in this case.
By default, a JPanel uses as layout manager an instance of class FlowLay-

out, not BorderLayout. When using a FlowLayout manager, components are
added using a one-argument method add. Any number of components can be
added, and they appear from left to right, in the order added.

If there is not enough room to hold components in a JPanel horizontally,
new rows are added to contain them. Thus, you can see why the layout manager
is called a flow layout manager; the components in it go with the flow.

That is all there is to FlowLayout managers.

Activity 17-3.1
demos adding
new rows.

Activity 17-3.1
does a better job
than we can do
on paper.

Get the class of
Fig. 17.9 from a
footnote on les-
son page 17-3.

17.3 Containers and layout managers 459

Figure 17.11: Three JFrames with Boxes in them

17.3.2 Boxes and BoxLayout managers

The leftmost JFrame of Fig. 17.11 looks like it contains a JPanel in its center.
However, the center is really an instance of class Box. Like JPanel, Box has
Container as a superclass. But it uses a BoxLayout manager instead of a
FlowLayout manager.

The leftmost JFrame is an instance of class BoxDemo of Fig. 17.12. We
investigate its constructor.

The second statement creates and stores in variable b a Box object. The argu-
ment of the constructor call is a constant of layout manager BoxLayout, which
tells the layout manager to lay out the Box horizontally. Then, the four buttons
are added to Box b using a single-argument add procedure, just as with a
FlowLayout manager.

Following that, the JFrame’s content pane is stored in variable cp and the
components are added to content pane cp, with the Box object in the center.
Finally, the JFrame is packed.

When using a BoxLayout manager, components are added one at a time,
using the one-argument method add. But with a BoxLayout manager, the com-
ponents always stay in a row. They may get squished together, but they remain
in one row.

Activity
17-3.2

460 Chapter 17 GUIs

import java.awt.*;

import javax.swing.*;

public class BoxDemo extends JFrame {

/** Constructor: an invisible frame with title t, labels in the north and south,
and a four-button horizontal Box in the center. */

public BoxDemo(String t) {

super(t);

Box b= new Box(BoxLayout.X_AXIS);

b.add(new JButton("0"));

b.add(new JButton("1"));

b.add(new JButton("2"));

b.add(new JButton("3"));

Container cp= getContentPane();

cp.add(new JLabel("north"), BorderLayout.NORTH);

cp.add(new JLabel("south"), BorderLayout.SOUTH);

cp.add(b, BorderLayout.CENTER);

pack();

}

}

Figure 17.12: Class BoxDemo

Vertical versus horizontal layout
Because the argument to the Box constructor is BoxLayout.X-AXIS, the line

of components is horizontal. If we change the argument to BoxLayout.Y_AXIS,
the line of components is vertical, as shown in the center of Fig. 17.11.

A rectangular layout of buttons
Class Box and layout manager BoxLayout, together with the fact that we can

nest components, can be used to construct quite complex layouts. As an example
of this, we show code that, when placed in the constructor, produces the right-
most JFrame of Fig. 17.11, which looks like a rectangle of buttons.

First, create variable leftBox, store in it a vertical Box, and add three but-
tons to it:

Box leftBox= new Box(BoxLayout.Y_AXIS);

leftBox.add(new JButton(" 00 "));

leftBox.add(new JButton(" 01 "));

leftBox.add(new JButton(" 02 "));

Second, create a rightBox, store in it a vertical Box, and add three buttons
to it:

Box rightBox= new Box(BoxLayout.Y_AXIS);

rightBox.add(new JButton(" 10 "));

rightBox.add(new JButton(" 11 "));

rightBox.add(new JButton(" 12 "));

Third, create variable b, store in it a horizontal Box, and add boxes leftBox
and rightBox to it:

Box b= new Box(BoxLayout.X_AXIS);

b.add(leftBox);

b.add(rightBox);

Finally, add the labels and box b to the content pane and pack it:

Container cp= getContentPane();

cp.add(new JLabel(" north "), BorderLayout.NORTH);

cp.add(new JLabel(" south "), BorderLayout.SOUTH);

cp.add(b, BorderLayout.CENTER);

pack();

The ability to nest containers in other containers, together with the ability to
create horizontally or vertically placed components, makes it quite easy to con-
struct complex GUI designs.

Leaving spaces in a Box
Look at the JFrame on the right in Fig. 17.11. Suppose we do not want the

right middle button, but we do want the lower right button to remain at the bot-

17.3 Containers and layout managers 461

tom. To do this, instead of adding the button to rightBox, create an invisible
component and add it:

rightBox.add(Box.createGlue());

Class Box has a number of static methods for generating components that create
space in one fashion or another. Study the class specification to find out more
about them. Here are some of them:

Box.createGlue(); Box.createRigidArea(…);

Box.VerticalGlue(); Box.createHorizontalGlue();

Box.createVerticalStrut(…); Box.createHorizontalStrut(…);

Be careful with these procedures, for their action when the JFrame is resized
is not always clear. When using these features, you might fix the JFrame so it
cannot be resized by the user:

setResizable(false);

17.3.3 Using different layout managers

It is possible to change the layout manager of a JFrame (but not to a BoxLayout
manager). For example, to change it to a flow layout, use:

getContentPane.setLayout(new FlowLayout());

BoxLayout managers are reserved only for Box objects. If you want to use a
BoxLayout manager for a JFrame, then create a Box and place it as the sole com-
ponent of the JFrame, as outlined here:

JFrame jf= new JFrame("title");

Box b= new Box(BoxLayout.X_AXIS);

Add components to b;
jf.add(b,BorderLayout.CENTER);

17.4 Listening to a GUI

A GUI is useful only when it reacts to events —clicking a button, typing in a text
field, etc. In order to react, the program must have access to the events. In this
section, we show how to listen to events. We concentrate on listening to buttons
and to mouse events, for those are the most widely used events.

Lesson
page 17-4

Obtain a class
ChangeLayout
Demo from a
footnote on les-
son page 17-3.

462 Chapter 17 GUIs

Figure 17.13: A JFrame with two buttons, in two different states

17.4.1 Button events

To the left in Fig. 17.13 is a JFrame with two buttons. The east button is enabled,
so pressing it will cause an action to be performed; the west button is disabled
and appears grayed out. Clicking the east button disables it and enables the west
button, changing the JFrame into the state shown to the right in Fig. 17.13. Then,
clicking the west button disables it and enables the east button again.

The JFrame in Fig. 17.13 is an instance of class ButtonDemo1 of Fig. 17.14.
We show you how this class accomplishes its task in two steps. First, we show
the part that lays out the JFrame; second, we show how to make the buttons lis-
ten to mouse clicks. Note that the class contains a statement to import classes of
package java.awt.event; some of these classes are used in listening to events.

Obtain the
class of Fig.
17.13 from les-
son page 17-4.

Activity
17-4.1

17.4 Listening to a GUI 463

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class ButtonDemo1 extends JFrame implements ActionListener {

// Class invariant: exactly one of eastButton and westButton is enabled
private JButton westButton= new JButton("west");

private JButton eastButton= new JButton("east");

/** Constructor: invisible frame with title t and 2 buttons */

public ButtonDemo1(String t) {

super(t);

Container cp= getContentPane();

cp.add(westButton, BorderLayout.WEST);

cp.add(eastButton, BorderLayout.EAST);

westButton.setEnabled(false);

eastButton.setEnabled(true);

westButton.addActionListener(this);

eastButton.addActionListener(this);

pack();

}

/** Process a click of a button */

public void actionPerformed(ActionEvent e) {

boolean b= eastButton.isEnabled();

eastButton.setEnabled(!b);

westButton.setEnabled(b);

}

}

Figure 17.14: Listening to buttons

Laying out the JFrame
In the class, two buttons are created, eastButton and westButton. The

assertion for the two declarations, the class invariant, lets the reader know that
exactly one of the buttons is enabled at any point. As might be expected, the con-
structor adds the two buttons to the content pane. And, two statements disable the
west button and enable the east button, thus truthifying the class invariant. At the
end of the constructor, the frame is packed, as usual.

Making the buttons listen
Making a button listen is a three-step process:

1. Write a procedure actionPerformed to process a button click. It must
have one argument of type ActionEvent. Our procedure is given at the
bottom of the class in Fig. 17.14. It stores in local variable b a boolean
that indicates whether button eastButton is enabled and sets the en-
abledness of the two buttons accordingly. Here, you see calls to two
methods of class JButton: isEnabled and setEnabled. This particular
procedure does not access its parameter e. We talk about that later.

2. Have the class implement interface ActionListener. This ensures that
actionPerformed appears in the class. Do this by putting an implements
clause in the method header, as shown in Fig. 17.14. Do not worry if you
do not know about interfaces and implements clauses. Just do this.

3. Add an instance of this class as an action listener for the button. For
example, the following call adds this instance as a listener of button
westButton. Remember that keyword this, used in a method, refers to
the instance in which the method appears.

westButton.addActionListener(this);

464 Chapter 17 GUIs

Figure 17.15: Listening to mouse events

17.4 Listening to a GUI 465

/** A JPanel of size (WIDTH, HEIGHT) with no components. Green or red depending on whether
the sum of the parameters of the constructor is even. Click square to produce a pink disk on it;
click again to remove the disk. */

public class Square extends JPanel {

/** Height and width of square */

public static final int HEIGHT= 50;

public static final int WIDTH= 50;

private int x; /* x-coordinate of square on board */

private int y; /* y-coordinate of square on board */

private boolean hasDisk= false; /* = "the square has a pink disk" */

/** Constructor: a square at (x, y) */
public Square(int x, int y) {

this.x= x; this.y= y;

setPreferredSize(new Dimension(WIDTH, HEIGHT));

this.addMouseListener(new MouseEvents());

}

/** paint this square using g */
public void paint(Graphics g) {

if ((x+y)%2 == 0) { g.setColor(Color.green); }

else { g.setColor(Color.red); }

g.fillRect(0, 0, WIDTH - 1 , HEIGHT - 1);

if (hasDisk) {

g.setColor(Color.pink);

g.fillOval(7, 7, WIDTH - 14, HEIGHT - 14);

}

g.setColor(Color.black);

g.drawRect(0, 0, WIDTH - 1 , HEIGHT - 1);

g.drawString("(" + x + ", " + y + ")", 10, 5 + HEIGHT / 2);

}

/** Complement the "has pink disk" property */
public void complementDisk() { hasDisk= !hasDisk; repaint(); }

/** Remove pink disk (if present) */

public void clearDisk() { hasDisk= false; repaint(); }

/** Contains methods that process mouse events */

public class MouseEvents extends MouseInputAdapter {

/** Complement the "has pink disk" property */

public void mouseClicked(MouseEvent e) { complementDisk(); }

}

}

Figure 17.16: Class Square

Now, whenever button westButton (say) is clicked by the user, method
actionPerformed is called to process the click.

This may seem like a lot of work, but there are only three pieces that you
have not seen before: (1) a procedure that processes mouse clicks, (2) the imple-
ments clause, and (3) a call to register this instance as a listener of the button.

Differentiating among buttons
Procedure actionPerformed of Fig. 17.14 does the same thing no matter

which of the two buttons is clicked. In some situations, we want different actions
for different buttons. We describe two ways to identify the source of an event:

1. Within actionPerformed, determine the component that caused the
event. Do this using parameter e of procedure actionPerformed, which
is a description of the event that caused the method to be called. Method
e.getSource() yields the component on which the event occurred. So,
we can test whether the component is the east button.

if (e.getSource == eastButton) ...

2. Provide different actionPerformed procedures. This requires providing
different classes to contain the different procedures and takes more work.
It can sometimes best be done using an inner class. We do not discuss this
here but leave it to activity 17-4.2 and a footnote on lesson page 17-4.

17.4.2 Mouse events: class Square

The leftmost JFrame in Fig. 17.15 contains a GUI, which contains the basics for
constructing a checkerboard. Click on a square, and a pink disk appears in it, as
shown in the middle JFrame. Well, it should be pink, and the squares themselves
are in living red and green, if you look at them in activity 17-4.3. Click again on
the same square and pink disk disappears. Do this any number of times, and for
any square. To remove all the pink disks, click button initialize.

Each of the four squares is an instance of class Square, which extends class
JPanel as shown in Fig. 17.16. We do not add components to the JPanel. We
only draw on it using methods of class Graphics. Each square is 50 by 50 pix-
els. Two fields contain the coordinates of the square —used to print on the
square— and field hasDisk indicates whether a disk is present on the square.

The constructor saves its two parameters in the fields and sets the preferred
size of the JPanel to WIDTH and HEIGHT. Its last statement is explained later.

Method paint is called by the system whenever the square has to be repaint-
ed. First, it sets the pen color to the background color —green or red— and fills
in the square with that color. Second, if a pink disk is to be drawn, it sets the pen
color to pink and draws the disk. Last, it sets the pen color to black, draws the
border, and draws the coordinates on the square. The order in which these actions
are done is important since each item is drawn on top of the previous one.

Obtain the class
in Fig. 17.15
from lesson
page 17-4.

Activity
17-4.3

Activity
17-4.2

466 Chapter 17 GUIs

17.4 Listening to a GUI 467

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class MouseDemo extends JFrame {

Box leftColumn= new Box(BoxLayout.Y_AXIS);

Square b00= new Square(0,0);

Square b01= new Square(0,1);

Box rightColumn= new Box(BoxLayout.Y_AXIS);

Square b10= new Square(1,0);

Square b11= new Square(1,1);

JButton jb= new JButton("initialize");

Box b= new Box(BoxLayout.X_AXIS);

/** Constructor: an invisible JFrame with title t */

public MouseDemo(String t) {

super(t);

leftColumn.add(b00);

leftColumn.add(b01);

b.add(leftColumn);

rightColumn.add(b10);

rightColumn.add(b11);

b.add(rightColumn);

Container cp= getContentPane();

cp.add(b, BorderLayout.CENTER);

cp.add(jb, BorderLayout.SOUTH);

jb.addActionListener(new ButtonListener());

pack();

setResizable(false);

}

/** Respond to mouse click on button jb */
public class ButtonListener implements ActionListener {

public void actionPerformed(ActionEvent e) {

b00.clearDisk();

b01.clearDisk();

b10.clearDisk();

b11.clearDisk();

}

}

}

Figure 17.17: Class MouseDemo

Method complementDisk complements the disk-present property —if there
is a disk, it removes the disk, and vice versa. Method clearDisk makes sure
there is no disk. Both methods call repaint, telling the system that the square
must be repainted.

Registering for mouse clicks
Now look in Fig. 17.16 at class MouseEvents, which is defined at the bot-

tom of class Square. You may not have known that one class can be declared
within another. Class MouseEvents is an inner class of class Square. We need
it to be an inner class so that, by the inside-out rule (see Sec. 2.4), its method
mouseClicked can reference method complementDisk.

A complete understanding of inner classes is given in Sec. 12.4. But you do
not need that complete understanding to continue here.

Class MouseEvents extends class MouseInputAdapter and overrides its
method mouseClicked. This method is to be called when there is a mouse click
on the component. Here, the method simply calls complementDisk, so if there
was a disk, there will not be, and vice versa.

An instance of class MouseEvents has to be registered as a listener for the
Square. This is done in the constructor of class Square using this statement:

this.addMouseListener(new MouseEvents());

That is all there is to listening to a mouse click: Write a (inner) class that has
the method that responds to a mouse click and register an instance of the class as
a listener.

About class MouseInputAdaptor
Class MouseInputAdaptor has six methods for dealing with mouse events:

1. when the mouse enters the component.
2. when the mouse leaves the component.
3. when the mouse is pressed on the component.
4. when the mouse is released on the component.
5. when the mouse is clicked on the component.
6. when the mouse is dragged beginning in the component.

These methods do not do anything unless you override them. For most simple
GUI applications, mouseClicked is the only method you need to define.

17.4.3 Mouse events: class MouseDemo

The GUI window (in all three states) of Fig. 17.15 is an instance of class
MouseDemo of Fig. 17.17. It makes use of class Square. We discuss MouseDemo.

Three fields, leftColumn, b00, and b01, are initialized with values that
make up the two lefthand boxes of the GUI. Similarly, fields rightColumn, b10,
and b11 make up the two righthand boxes. There are two other fields: Button jb

Activity
17-4.4

468 Chapter 17 GUIs

and and the horizontal box b that contain vertical boxes leftColumn and
rightColumn.

Now look at the constructor of class MouseDemo. After the superconstructor
is called, the following happens:

1. The left column of boxes is created and added to Box b.
2. The right column of boxes is created and added to Box b.
3. Horizontal box b and button jb are added to the content pane.
4. A button listener is registered with button jb (we look at this later).
5. The JFrame is packed.
6. The JFrame is fixed so that it cannot be resized.

Registering a button listener
Button jb, the initialize button, needs a listener. Recall that to handle a click

of a mouse button, a method actionPerformed has to be written and an object
that contains this method has to be registered with the button, using the button's
method addActionListener.

Class MouseDemo has an inner class, which provides method actionPer-
formed. This class is written as an inner class so that the method can call meth-
ods clearDisk of the four squares to remove any pink disks on them —notice
the four calls in the body of method actionPerformed.

Step 4 in the list above registers an instance of this class with button jb,
using the statement:

jb.addActionListener(new ButtonListener());

This concludes our discussion of class MouseDemo. Looked at as a whole, it
can seem quite daunting. But broken down into its constituent pieces, it is quite
logical and reasonable. We urge you to get a copy of these classes from the CD
and experiment with them to see that the clicking of buttons really works.

Listening to the Squares in class MouseDemo
We placed the listener for mouse events on a square in class Square. This

was easier because, in the Square constructor, we had to register only one mouse
listener (although that registration happens whenever an instance is created).

Registering the mouse listeners in class MouseDemo is also possible. It has
the disadvantage that a listener for each Square must be registered separately. It
has the advantage that only class MouseDemo knows the precise location of each
Square, and this information may be necessary when processing some mouse
events, like mouse drags and releases. We do not explore this issue further.

17.4.4 Listening to other components

Listening to other components besides buttons and mouse clicks is similar to lis-
tening to buttons. One registers a listener with that component. Therefore, we do
not discuss listening to other components in this paper text.

Obtain the class
in Fig. 17.16
from lesson page
17-4.

17.4 Listening to a GUI 469

However, page 17-4 of the ProgramLive CD has footnotes that discuss:

1. Listening to a return/enter key-press in a text field
2. Listening to a JList
3. Listening to a JSlider
4. Listening to a JColorChooser
5. Listening to a JComboBox
6. Listening to a JCheckBox
7. Listening to a RadioButton

Further, the ProgramLive CD contains programs that demo most of these
tasks. They can be obtained from the CD from footnotes on lesson page 17-4.

If you are designing a GUI that requires listening to one of the above com-
ponents, obtain the corresponding demo program from the ProgramLive CD and
use it as an example.

17.4.4 Using several listeners

A prime goal in designing a program is to place distinct tasks in different mod-
ules, thus separating your concerns. Appropriately isolating different tasks can
simplify development, debugging, and later maintenance. For example, when
changing the program later because of a change in specification, it will be easi-
er to identify the modules that need changing and change them.

The system for listening to events in Java helps us isolate different tasks in
different modules (in this case, different listeners). It is possible to register sev-
eral listeners for the same event, and all of them will be called when that event
happens —in the reverse order in which they were registered.

Activity 17-4.5 of the ProgramLive CD describes a program that has three
listeners for a button press or a return/enter key-press in a text field. When the
button is pressed or the return/enter key is pressed, three things happen:

1. An upper-case version of the text field is appended to a text area.
2. The text field is appended to an output file.
3. The text field is cleared.

Each of these tasks is handled by a different listener —but each listener
responds to the same event.

17.5 Dialog windows

In some situations, it is useful to pop up a window that asks the user for some
information, wait for the information, and then proceed depending upon what the
information is. Section 5.7.2 shows how to use a JFileChooser to request a file
to read/write from the user. Here, we look at class JOptionPane, which provides
some standard dialog windows, and class JDialog, which you can use to build
your own dialog window from scratch.

Lesson
page 17-5

Obtain the class
discussed in
Activity 17.4.5
from lesson
page 17-4.

Activity
17-4.5

470 Chapter 17 GUIs

17.5.1 Class JOptionPane

Class JOptionPane, in package javax.swing, provides several static methods
for creating and showing different kinds of dialog windows. We look at four of
the methods here: showMessageDialog, showInputDialog, showConfirmDia-
log, and showOptionDialog.

Method showMessageDialog
Execution of the method call shown below causes the dialog window on the

left of Fig. 17.18 to appear on your monitor:

JOptionPane.showMessageDialog(

null,

"Division by 0",

"arithmetic error",

JOptionPane.ERROR_MESSAGE);

The call has four arguments. The first argument, the parent window, is explained
later. The second is the message of the dialog window. The third is the title of the
dialog window. The fourth determines the way the dialog window looks.

There are four other possibilities for the fourth argument:

• JOptionPane.INFORMATION_MESSAGE
• JOptionPane.WARNING_MESSAGE
• JOptionPane.QUESTION_MESSAGE
• JOptionPane.PLAIN_MESSAGE

Activity
17-5.1

17.5 Dialog windows 471

Figure 17.18: JOptionPanes

Figure 17.19: A showInputDialog window and a showConfirmDialog window

As another example, the right dialog window in Fig. 17.8 was created with
fourth argument JOptionPane.INFORMATION_MESSAGE.

Modal windows
These dialog windows are modal dialog windows. This means that, when

they are shown, they capture the focus, and clicking on other windows belong-
ing to this execution will have no effect. You must close this window before any-
thing else can happen in the program.

The first argument, the parent
The first argument in calls to showMessageDialog is called the parent win-

dow of the dialog window. If the first argument is null, the dialog window
appears in the center of the monitor. However, suppose the first argument is the
name window (say) of some window that is already showing on the monitor.
Then, when the dialog window is created and shown, it is shown in front of win-
dow window.

Function showInputDialog
String function JOptionPane.showInputDialog displays a modal dialog

window with a message and returns text typed by the user. An example window
appears to the left in Fig. 17.19. A call has four parameters:

1. The parent (as with method showMessageDialog).
2. The message (a String). In the example, it is "What's your opinion

about eating meat?".
3. The title (a String). In the example, it is: "question message".
4. The style of the window, which tells what picture to put in the window. It

is one of the following constants of JOptionPane:

JOptionPane.ERROR_MESSAGE

JOptionPane.INFORMATION_MESSAGE

JOptionPane.WARNING_MESSAGE

JOptionPane.QUESTION_MESSAGE

JOptionPane.PLAIN_MESSAGE

Activity
17-5.2

472 Chapter 17 GUIs

Figure 17.20: A showOptionDialog window

The result of a call is as follows: If the user hits the cancel button, null is
the result. If the user clicks the OK button, the result is the contents of the text
field.

Function showConfirmDialog
Function JOptionPane.showConfirmDialog displays a modal dialog win-

dow with a message and returns an int, depending on what button was clicked.
An example window appears to the right in Fig. 17.19.

We explain only the version that has five parameters. Here they are:

1. The parent (as with method showMessageDialog).
2. The message. In the example, it is "Are you a vegetarian?".
3. The title. In the example, it is: "question message".
4. Description of the buttons that appear in window. In the example, con-

stant JOptionPane.YES_NO_CANCEL_OPTION was used. Here are the pos-
sible constants:

JOptionPane.YES_NO_OPTION
JOptionPane.YES_NO_CANCEL_OPTION
JOptionPane.OK_CANCEL_OPTION
JOptionPane.DEFAULT_OPTION (gives a single button, OK)

5. The style of the window, which tells what picture to put in the window.
This is one of the following JOptionPane constants:

JOptionPane.ERROR_MESSAGE
JOptionPane.INFORMATION_MESSAGE
JOptionPane.WARNING_MESSAGE
JOptionPane.QUESTION_MESSAGE
JOptionPane.PLAIN_MESSAGE

The result of a call is one of the following JOptionPane constants:

JOptionPane.YES_OPTION
JOptionPane.NO_OPTION
JOptionPane.CANCEL_OPTION
JOptionPane.OK_OPTION
JOptionPane.CLOSED_OPTION

Function showOptionDialog
Function JOptionPane.showOptionDialog displays a modal dialog win-

dow with a message and returns an int, depending on what button was clicked.
The caller gives the buttons that appear in the window. An example dialog win-
dow appears in Fig. 17.20.

We explain the version of the function that has these seven parameters:

1. The parent (as with method showMessageDialog).

Activity
17-5.2

Activity
17-5.2

17.5 Dialog windows 473

2. The message (a String). In the example, it is "Are you a vegetari-
an?".

3. The title (a String). In the example, it is: "question message".
4. Defines what buttons appear in the window if the sixth parameter is null.

We always use 0 for the corresponding argument.
5. The style of the window, which tells what picture to put in the window.

This is one of the following JOptionPane constants:

JOptionPane.ERROR_MESSAGE

JOptionPane.INFORMATION_MESSAGE

JOptionPane.WARNING_MESSAGE

JOptionPane.QUESTION_MESSAGE

JOptionPane.PLAIN_MESSAGE

6. An array of button titles. In Fig. 17.20, the array is {"yes", "nein",

"maybe"}. Actually, this parameter is any array of objects. Array ele-
ments that are strings are turned into buttons; array elements that are not
strings are simply placed in the window in some fashion.

7. The component in the array (see parameter 6) that should be highlighted
when the window appears. In this example, "nein". Striking the enter
key is equivalent to clicking this button.

The result of a call is the index in the button array of the button that was
clicked or, if the close button was clicked, value JOptionPane.CLOSED_OPTION.

17.5.2 Class JDialog

An instance of class JDialog is a bare window that can be used to create a dia-
log with the user. As with a JFrame, you can add whatever components you want
to its content pane and listen to them. And, as with all the methods discussed in
Sec. 17.5.1 on JOptionPanes, you can define the parent frame and title.

You also have the ability to make the window non-modal, which means that
other processing can go on while the dialog window is visible on the monitor,
which you cannot do using the JOptionPane methods.

To find out more about JDialog, look at the Java API specs for it. Look also
at the tutorial for it that is referenced in the web page for lesson 17 on the
ProgramLive CD.

17.6 Key concepts

• GUI. A GUI is a graphical user-interface. In Java, GUIs are developed using
classes in the older package java.awt and the newer package javax.swing.

• Top-level windows. The classes whose instances can be independent windows
are: Window, JWindow, Frame, JFrame, and JDialog (or their subclasses).

474 Chapter 17 GUIs

• Containers and components. A container is an instance of a class that can con-
tain components (like buttons and text fields). A component is an instance of a
class that can be placed in a container. Panel, JPanel, and Box are examples of
components that are themselves containers. Using these three, one can nest com-
ponents to any level.

• Basic components. The basic components are labels, buttons, text fields, text
areas, checkboxes, radio buttons, combo boxes, lists, and sliders.

• Layout managers. A layout manager for a container is an instance of a class
that takes care of “laying out” the components that have been added to the con-
tainer. Each container has a layout manager associated with it. Each different
kind of layout manager uses different rules for laying out the components. The
primary layout-manager classes are BorderLayout, FlowLayout, and
BoxLayout, but there are others.

• Graphics. An instance of container class JPanel has a method paint, which
can be used to draw on the panel using methods of class Graphics.

• Listening to a GUI. In order to listen to an event like a mouse click, a click of
a button, or the press of the enter/return key in a text field, an instance of a class
that implements ActionListener has to be registered with the component on
which the event takes place. The instance of the class needs a method action-
Performed, which processes the event.

• Dialog windows. Class JOptionPane has several methods that make it easy to
display a modal window on the monitor, wait for the user to close it, and then
retrieve the user’s response.

• Lightweight versus heavyweight. Top-level windows are heavyweight —they
have associated “peers”, written in machine language, that do all the window
drawing. Components can be heavyweight or lightweight, which means that they
do not have such peers. All the awt components are heavyweight, but the swing
components are lightweight. Mixing lightweight and heavyweight components
may lead to inconsistencies and unwanted behavior in a window. So that this
does not happen, try to use all swing components, or all awt components.

Exercises for Chapter 17

E1. Write (and test) a subclass of JFrame that has two components:
• in the west, a JLabel that contains “waist size:”;
• in the east, a JTextField with initial value “34 inches”.

E2. Same as exercise E1, but right-adjust the label —see Sec. 17.2.2. Drag the
window to make it wider to see what happens to the label.

E3. Like exercise E1, but make the text field uneditable.

Exercises for Chapter 17 475

E4. Write (and test) a subclass of JFrame that has five components:
• in the east, a JLabel that contains “EAST”;
• in the west, a JLabel that contains “WEST”;
• in the north, a JButton that says “north”;
• in the south, a JButton that says “south”;
• in the center, a JTextField that initially contains “this is a text field”.

Sections 17.1.2 and17.1.3 give you the necessary information.

E5. Write (and test) a subclass of JFrame that contains:
• a JLabel in the west that contains “color”;
• a JTextField in the east that initially contains: “red”;

Include a method getTheField() that returns the value in the JTextField, a
method setTheField(s) that changes the field to String s, and methods make-
FieldEditable() and makeFieldUneditable() with obvious meaning. Test
all this in the Interactions pane of DrJava by creating and showing an instance of
the subclass, calling the methods, and changing the value in the JTextField (by
typing into the field) several times. See Sec. 17.2.2.

E6. Write (and test) a subclass of JFrame that contains:
• a JTextArea in the west that initially contains: "The west\nwindow" and

has no scroll bars.
• a JTextArea in the east that initially contains: "The east\nwindow" and

has scrollbars, if necessary.
Make both of the text areas 6 rows by 10 columns. Using DrJava’s Interactions
pane, create and show an instance of this subclass and experiment with typing
text into the two text areas.

Add methods dontWrap() and wrap() to the subclass, which cause the text
not to wrap and to wrap. Create and show an instance of this subclass and exper-
iment with typing text and the wrap-nowrap methods.

See Sec. 17.2.2.

E7. Write (and test) a subclass of JFrame that contains:
• a JTextArea in the west that initially contains: "The west\nwindow" and

has no scroll bars.
• a JTextArea in the east that initially contains: "The east\nwindow" and

has scrollbars, if necessary.
Make both of the text areas 6 rows by 10 columns. Include methods getWest-
Area() and getEastArea() that return the values in the text areas and methods
setEastArea(s) and setWestArea(s) that change the fields to String s. Test
all this in the Interactions pane of DrJava by creating and showing an instance of
the subclass, calling the methods, and changing the values in the text areas (by
typing into them) several times. See Sec. 17.2.2.

E8. Write (and test) a subclass of JFrame that contains:
• a JCheckBox in the east, with title “rain”;
• a JRadioButton in the west, with title “hot”.

476 Chapter 17 GUIs

E9. Write (and test) a subclass of JFrame that contains:
• a radio button in the east, with title “rain”.
• a radio button in the center, with title “cloudy”.
• a radio button in the west, with title “sunny”.

Group them together in a ButtonGroup, and make “sunny” be checked when the
window is first shown. See Sec. 17.2.3.

E10. Write (and test) a subclass of JFrame that contains a JComboBox in the cen-
ter. It should have these entries: “rain”, “snow”, “cloudy”, “sunny”, with “sunny”
initially checked. Write a procedure addItem(s) that adds an item with title s to
the JCombobox. Experiment in DrJava’s Interactions pane. See Sec. 17.2.3.

E11. Write (and test) a subclass of JFrame that contains a JList with a scroll bar
(if necessary) in the center. It should have these entries: “rain”, “snow”,
“cloudy”, “sunny”, “fog”, “hurricane”, with “sunny” initially checked. Experi-
ment with this in DrJava’s Interactions pane. See Sec. 17.2.3.

E12. Write (and test) a subclass of JFrame that contains a JColorChooser in the
center. Experiment with it in DrJava’s Interactions pane. See Sec. 17.2.3.

E13. Write (and test) a subclass of JFrame that contains:
• a JTextField in the north, with initial value "red";
• a red JPanel in the center, with preferred size 100 by 100 pixels.

The class should have a String field that initially contains "red". It should have
a method newColor(s), which changes the text field to s and then changes the
color of the JPanel accordingly —but only if s is one of "red", "green",
"pink", "white", "black", and "magenta". See Sec. 17.2.4.

E14. Write (and test) a subclass of JFrame that contains:
• A JPanel in the north, which itself contains four buttons titled “one”,

“two”, “three”, “four”.
• A Box in the south, which itself contains four buttons titled “one”, “two”,

“three”, “four”.
Create and show an instance of this class. Then, experiment with it, by dragging
it to make it narrower and wider. What happens to the buttons in the JPanel? In
the Box? See Sec. 17.3.

E15. Write (and test) a subclass of JFrame that contains a Box in its center. This
Box should itself contain two rows and three columns. Each entry should be a
JLabel, with these titles:

"(a1, b2)" "(a1, b3)" "(a1, b4)"

"(a2, b2)" "(a2, b3)" "(a2, b4)

See Sec. 173.2.

E16. Write (and test) a JFrame that contains a Box in its center. This Box should
itself contain three rows:

• the first row contains two JLabels with titles "left" and "right".

Exercises for Chapter 17 477

• the second row contains one JTextField with 5 rows and 30 columns. Put
whatever you want in it.

• the third row contains three JButtons labeled "yes", "no", and "cancel".
See Sec. 17.3.2.

E17. Write (and test) a subclass of JFrame that contains the two buttons as shown
in Fig. 17.13. Exactly one should be enabled at any time, and clicking one of the
enabled one enables the other. See Sec. 17.4.1.

E18. Write (and test) a subclass of JFrame that contains a rectangle of four but-
tons labeled "top-left", "top-right", "bot-left", and "bot-right". Only
one should be enabled at any time, and clicking the enabled one enables the next
one in clockwise order. See Sec. 17.41.

E19. Add a JLabel to the subclass of exercise E18. The label should always have
the same title that the enabled button has.

E20. Add a method change(s) to the subclass of exercise E19. Parameter s has
to be one of the strings "top-left", "top-right", "bot-left", and "bot-
right" (if it is anything else, a call should terminate without doing anything).
Change the enabled button (and the label) to the one given by s.

E21. Write (and test) a subclass of JFrame that contains a button title "rotate"
in the north and a Box of three colored JPanels in the center —make them a rea-
sonable size, through trial and error. One JPanel should be red, one white, and
one blue. Whenever button rotate is clicked, the colors should rotate one position
to the right —the blue becomes white, the white becomes red, and the red
becomes blue.

E22. Class Square of Fig 17.16 is either green or red and may have a pink disk
on it. Change the background color to be either green or pink. Then, modify the
class so that it can have either a red or a black disk (or nothing) on it, as in the
game of checkers. This means having suitable methods to place a disk and to
remove any disk on the square.

E23. Write (and test) a subclass of JFrame that has a row of four Squares on it,
as given in exercise E22. Initially, each Square should have nothing on it. Also,
the subclass should have two text fields and a button. The user should be able to
type a number (1, 2, 3, or 4) into the first text field, either "" or "black" or
"red" into the second text field, and click the button. This should result in the
designated square having either nothing, a black disk, or a red disk on it. If the
user typed something else in either of these fields, no change should be made.

478 Chapter 17 GUIs

These appendices cover:
I. Issues in dealing with Java.

II. The Java API specifications.
III. Outline of some Java API classes.
IV. Correctness of programs.

Appendices

INTRODUCTION

There are two methods for developing and testing Java programs. The first is to
use a command-line window, like an MSDOS window or a Unix terminal win-
dow. Here, you use an editor, like Notepad or BBEdit or emacs or VI, to edit the
.java source files. When you think the program is ready, you compile the pro-
gram and execute it, using command-line (typed from the keyboard) instructions.

The second method is to use an integrated development environment, or IDE.
The IDE provides a GUI (graphical user interface) that has an editor, a button to
compile the program, and another button to execute the program. It may have
other bells and whistles that help you test programs, debug them, and more.

There are a dozen or more popular Java IDEs: BlueJ, CodeWarrior, DrJava,
Eclipse, Forte, JBuilder, JGrasp, ProjectBuilder, Visual Cafe, and many more.
Search the internet for “Java IDE” and you will find a lot of them.

In this appendix, we introduce you to the use of a command-line system and
to DrJava. DrJava is quite simple to use, and yet it has a powerful feature cur-
rently unmatched in other IDEs. Since it is free and small (just over 2MB), we
encourage you to download it even if you already have an IDE. You can do the
early exercises in this text most easily using DrJava, and you can then switch to
your other IDE when you are comfortable with Java.

Appendix I

Dealing with Java

OBJECTIVES

• Learn how to install and use DrJava.
• Learn how to edit, compile, and execute programs in a terminal window.
• Learn about the use of JUnit for testing programs.
• Learn how to make a stand-alone application.
• Learn about Java error/exception messages.

I.1 Java SDK

No matter which IDE you use, you will need a Java Virtual Machine (JVM) in
order to run Java programs. To compile programs, you will also need a Software
Development Kit (SDK) for Java. Some IDEs come with an SDK, especially the
commercial ones. If you have an IDE already, check the documentation to see if
it includes an SDK. Also, Mac OS X includes an SDK.

If you do not have an SDK, download it from the Sun web page. At the time
of this writing, the current version of Java, 1.4.1, is available at this URL:

http://java.sun.com/j2se/1.4.1/download.html

Download the SDK (not the JRE!) for your operating system, and carefully fol-
low the instructions for installing it.

I.2 DrJava

DrJava is a free IDE for editing, compiling, and executing Java programs. It was
developed in Java itself by the JavaPLT group at Rice University. They are still
working to improve and extend it. It was designed primarily with students in
mind and is easy to use, but it does have some features that advanced program-
mers will appreciate. It is also open source, which means that you can download
and read the Java source code for DrJava. DrJava was written in Java!

DrJava is the simplest IDE that we have found. It provides the fastest, most
intuitive way to get started with programming of any IDE that we have used.
(Other IDEs have strengths that DrJava does not.) DrJava is available here:

http://drjava.sourceforge.net

Once installed, DrJava is easy to run. Suppose you downloaded drjava-sta-
ble-200300822.jar. To run it, just double-click its icon.

Alternatively, in a command line in a terminal window, type:

java -jar drjava-stable-20030822.jar

You will see a window with three areas, as shown in Fig. I.1. This is a snapshot
from a Macintosh running OS X; yours may look different. We made the win-
dow as small as possible so that it fits in this book. The left pane contains a list
of files that you have opened. The right pane, called the “Definitions Pane”, con-
tains the Java code for the currently-selected file. The bottom pane, called the
“Interactions Pane”, allows you to try out Java statements and expressions.

Lesson 20 of
the CD con-
tains four
activities that
demonstrate
DrJava. These
activities, using
recordings,
synched anima-
tion, and snap-
shots of the
DrJava GUI,
do a better job
than we can do
here.

482 Appendix I Dealing with Java

Does it need tools.jar? In Windows, if you had to install the SDK, DrJava may ask you where
file tools.jar is. If you do not navigate to find it, you will not be able to com-
pile Java programs. Look for it where you installed the SDK, probably in fold-
er Program Files. Look for a folder named j2sdk1.4.0_01 (or something sim-
ilar). Inside it will be a folder lib, and inside lib should be tools.jar.

I.2.1 Using the Interactions Pane

The Interactions Pane has a prompt, “>”. You can type Java expressions and
statements at the prompt. Try it: click in the Interactions pane, type 3 + 4 * 5
and hit the return/enter key. Underneath the expression you should see the result:
23. Notice that the 23 does not have the prompt before it.

This interactive feature, missing from most IDEs, has revolutionized how
we teach because we can use it to demonstrate during our lectures.

You can type as many expressions as you like, one per line, and after each
one, DrJava will show you the result. You can also declare and initialize variables
in the Interactions Pane:

int i= 4;

Once a variable is declared and initialized, you can use it in expressions:

i * (i + 7)

That is all you need to know to do all the exercises in Chap. 1: just type the var-
ious expression and statements at the prompt.

I.2.2 Using the Definitions Pane

To write a Java class, type this in the Definitions Pane in the upper right:

public class MyPoint {

public int x;

public int y;

}

Appendix I.2 DrJava 483

Figure I.1: The DrJava GUI

Now save it in a file: click button “Save”, and make sure the name of the file
is MyPoint.java. The name of the file has to be the same as the name of the class
plus “.java”. Capitalization is vital! In Java, all names are case sensitive.

You also need to compile your code. Click button “Compile All”; in a few
moments, you should see this:

Last compile completed successfully.

If you do not see that, you have your first syntax error. Congratulations! You
will see many more syntax errors in your programming career. Get used to them;
they are a fact of life for every programmer. Just go back and make sure that you
typed class MyPoint exactly as we show it and that the file name is spelled cor-
rectly and has the right capitalization. Keep doing this until it compiles. Now you
can use MyPoint in the Interactions Pane.

The lower pane has three, and sometimes four, tabs. The leftmost tab is
“Interactions”. Click on it to bring back the Interactions Pane.

Type the following statements and expressions. Note that when you use a
semicolon, you do not see a result. Statements are terminated with semicolons;
expressions are not. Expressions have values; statements do not.

MyPoint p= new MyPoint();

p.x= 5;

p.y= -12;

p.x

p.y

5 * (p.x + p.y)

p.x= 9;

p.x

You now know enough to write classes in DrJava, compile them, and test them.

The Java console
When a Java program is running, error messages are printed in a special win-

dow, the Java console. Also, when one of the following statements is executed,
the value of the expression is placed in the Java console (and a new line is start-
ed, for println):

System.out.println(expression);

System.out.print(expression);

When using DrJava, error messages and the values of expressions in such print
and println statements are also printed in the Interactions pane, interspersed
with lines that the user types and responses from DrJava.

One of the tabs in the lower pane is titled “Console”. Clicking this tab
changes the lower pane into the Java console; there, you will see error messages
and the values of expressions from print and println statements.

484 Appendix I Dealing with Java

Using the Interactions history, resetting the Interactions Pane
DrJava keeps a history of lines that you have typed in the Interactions Pane.

Use the up- and down-arrow keys to scroll through them.
You can remove all variables that have been declared and start afresh by

pressing button Reset, in the upper right of the window. Hitting Reset does not
destroy the Interactions history; it just removes all traces of execution.

Using classes from the Java APIs
If you want to use a class from one of the API packages, you have to import

it. Import statements can be typed in the Interactions Pane. For example, type the
following lines into Java (hitting return after each one), and you will see a win-
dow for the JFrame appear in the upper left corner of your monitor. You may
have to resize the window to make it big enough to see the title in its title bar:

import javax.swing.*;

JFrame jf= new JFrame("First JFrame");

jf.show();

Method calls in the Interactions Pane
Click “New”. This creates a new document, initially called (Untitled). In

the Definitions Pane, type this class, which has one instance function and one
static function:

public class Test {

/** = the value 5 */
public static int testInstance() {

return 5;

}

/** = the value 6 */
public static int testStatic() {

return 6;

}

}

Save the file with name Test.java. After the file is saved, click button
Compile All. DrJava will compile the program. When it says “Last compilation
completed successfully”, click the Interactions tab and, in the Interactions Pane,
type this expression and then hit return:

Test.testStatic()

This expression is a call to function testStatic in class Test, and you can see
that it prints the value 6, as required by its specification.

Function testInstance is an instance function, so it belongs in each folder
of class Test. Before we can call it, we have to have a folder. Type the follow-
ing lines into the Interactions pane:

Appendix I.2 DrJava 485

Test t= new Test();

t.testInstance()

The first line creates an instance of class Test and stores its name in a new vari-
able t. The second line calls t’s function testInstance, which yields 5.

I.2.3 Javadoc

DrJava has a facility for creating and displaying Javadoc comments. Click the
item Javadoc on the right of the tool bar at the top of the DrJava window. A nav-
igation window appears, which asks you to select a folder into which the Javadoc
files will be placed. We suggest that you create a new folder titled “doc” within
the folder for the project you are working with and select it. After you select the
folder, DrJava creates the Javadoc files —be patient; it can take a few moments.
Finally, a new window will appear with the Javadoc spec in it, in the same for-
mat as the Java API specifications.

I.2.4 Using JUnit in DrJava

The application JUnit is designed to facilitate the testing of Java programs. JUnit
can be used in many contexts; here, we show how to use it in DrJava.

We use as an example the testing of function max of class SimpleMath in
Fig. I.2, which is assumed to be in file SimpleMath.java. We have deliberately

486 Appendix I Dealing with Java

public class SimpleMath {

/** = maximum of x and y */
public static int max(int x, int y) {

if (x <= y)

{ return y - 1; }

return x;

}

}

import junit.framework.TestCase;

public class TestMax extends TestCase {

public void testXBigger()

{ assertEquals(7, SimpleMath.max(7, 5)); }

public void testYBigger()

{ assertEquals(5, SimpleMath.max(-5, 5)); }

public void testXYSame()

{ assertEquals(8, SimpleMath.max(8, 8)); }

}

Figure I.2: Using JUnit to test method max

put a mistake in the function body.
Also in Fig. I.2 is a class TestMax, assumed to be in file TestMax.java. This

class contains three test cases to be used in testing method max. This class has the
following properties:

1. It imports junit.framework.TestCase.

2. It extends class TestCase.

3. It contains three public procedures without parameters, all of whose
names begin with test. We call these test procedures.

4. Each test procedure tests one test case by calling assertEquals. The first
argument of the call is the result that is expected from the test case; the
second argument, a call to method max that is the test case.

Suppose the two classes of Fig. I.2 are in the same directory and have been
opened in DrJava and compiled. Finally, suppose that file TestMax is selected in
DrJava and thus appears in the file window. Then, clicking button Test in the
righthand part of the tool bar at the top of DrJava causes calls to the three test
procedures to be executed. Each procedure contains a call to procedure assert-
Equals. If the first argument of that call equals the second, nothing is printed.
But if the first argument of that call does not equal the second, an error message
is printed in the Test output pane of the lower window.

In the case of the classes of Fig. I.2, these error messages will appear in the
Test output pane:

2 tests failed:

File: .../testjunit/TestMax.java [line: 8]

Error: expected:<5> but was:<4>

File: .../testjunit/TestMax.java [line: 12]

Error: expected:<8> but was:<7>

Click the mouse button on one of these error messages to highlight the line
in file TestMax that produced the error message, so you can easily see which test
case failed.

Conventions for test procedures
When button test in the tools bar is clicked, each test procedure is called

once to exercise a test case. In class TestMax of Fig. I.2, each test procedure sim-
ply contains a call of assertEquals to perform such a test. However, the test
procedure can do anything. It can have assignments, if-statements, loops —
whatever is necessary to exercise the test case.

Figure I.3 describes other inherited procedures (besides assertEquals) that
could be used to exercise test cases.

Class TestMax of Fig. I.2 tests a rather simple static method. When testing
more complicated ones that interact in some fashion with other methods, or when

Appendix I.2 DrJava 487

testing a non-static method, it may be necessary to create objects that are to be
used in several tests. So these objects may have to be created before any of the
test procedures are called. To accomplish this, define this procedure in class
TestMax:

protected void setUp() { ... }

Procedure setUp is called before any of the procedures whose name begins with
test are called.

Write one test procedure or many?
It is possible to include all the test cases in a single test procedure, as fol-

lows:

public void testAllTestCases() {

assertEquals(7, SimpleMath.max(7, 5));

assertEquals(5, SimpleMath.max(-5, 5));

assertEquals(8, SimpleMath.max(8, 8));

}

The problem with doing this is that only one failure will be reported because a
test procedure terminates as soon as one failure is detected and reported. In gen-
eral, one wants to exercise as many test cases as possible. The guideline to fol-
low, then, is the following:

Guideline: Exercise independent test cases in different test pro-
cedures.

488 Appendix I Dealing with Java

/** Display an error message if expected value ob1 does not equal ob2
(use ob1.equals(ob2) for the test) */

assertEquals(Object ob1, Object ob2)

/** Display an error message that includes s if expected value ob1 does not equal ob2
(use ob1.equals(ob2) for the test) */

assertEquals(String s, Object ob1, Object ob2)

/** Display a message if p1 != p2. (Methods exist for the other primitive types.) */

assertEquals(int p1, int p2)

/** Display a message that includes s if p1 != p. (also for the other primitive types) */

assertEquals(String s, int p1, int p2)

/** Display a message that includes s if b is not true. */

assertTrue(String s, boolean b)

/** Display a message that includes s if b is not false. */

assertFalse(String s, boolean b)

Figure I.3: Methods of class TestCase

Summary
We have shown how to use JUnit to develop test cases that can be exercised

easily whenever a method is changed. What we have shown works very well for
testing individual methods. JUnit also provides the ability to create test suites —
collections of tests that can be used to test the many classes that appear in a pro-
gram. A discussion of these other features is beyond the scope of this book.

I.3 Using a command-line window

We describe how to deal with Java from an MDOS window on a PC. Dealing
with Java in a UNIX terminal window is similar.

In the window, navigate to the folder that contains the Java program that you
want to compile and execute. Suppose the Java program is a Java application
(see Sec. 16.1), and suppose that method main is in class ClassName.

Compiling the Java source files
To compile all the .java source files, type the following (*.java expands

into a list of file names that end in .java). This compiles your program —it is
equivalent to clicking button Compile all in DrJava.

javac *.java

Executing the program
To execute the program by calling static method main in class ClassName,

type the command:

java ClassName

Note that the command should not include the suffix .class or .java.

Appendix I.3 Using a command-line window 489

Setting variable path. If you cannot execute any of the commands java, javac, javadoc, or
jar, you probably have not set your path correctly. We explain this for
Windows 2000; older windows systems are similar.

Your system contains a variable that lists directories with executable files
in them. Type "path" in a command-line window. The line that is printed con-
tains path names separated by semicolons. For example, one path name may be:

C:\WINNT\system32

There should be a path that looks like this: C:\j2sdk1.4.1_02\bin. This is a
directory called bin inside the directory where you installed the sdk. It may be
different on your computer. If such a path is not there, you have to add it. Bring
up the help in your Windows system, open the index, and look for "path". There,
you will find instructions on appending another directory to variable path. It
may be something like this (but read the instructions):

path %path%;C:\j2sdk1.4.1_02\bin

Extracting Javadoc comments
Assume that you have placed Javadoc comments on classes, methods, and

fields (see Appendix II.2). To extract the Javadoc comments, type the following
commands:

mkdir doc

javadoc -d doc *java

(Note, in some systems, you may not have to create directory doc first; javadoc
will do it for you.) Program javadoc creates in directory doc a description of
your .java files in the same format as the API file specifications that you have
been looking at, where the description contains all the javadoc comments.

Bring up directory doc in a window (not a command-line window). Double
click on file index.html. Your browser will open with that file, and you will be
able to look at the specifications of your program. It's neat!

I.4 Making a stand-alone application

A program may consist of many classes, generally in the same directory. If you
want to give someone your program, you have to give them all the .class files
—zip them up into a .zip file— and the someone must then unzip them. That is
messy. To make things easier, you can make a jar file of the classes. Jar stands
for Java ARchive; after tar files (TapeARchives) on Unix systems.

To make a jar file, get into a DOS or command-line window and navigate to
the directory where the .java and .class files are. Then, type in this command:

jar -cf file-name.jar *.class

The c is for create. The f is for file and indicates that the name of the file to
create follows: file-name.jar. The *.class is expanded to name all the .class
files in the directory. So, this command makes up a jar file named file-
name.jar that contains all the .class files in the directory.

You still have to insert into the jar file something that tells it which class has
method main. Suppose it is class MainClass. Then do the following:

(a) Make up a file x.mf that contains one line of text in it:

Main-class: MainClass

The suffix on x.mf stands for manifest. You do not have to use the suffix. Be sure
to hit the enter key after typing the text; there must be a carriage-return or line-
feed in it. You can create this file in wordpad or notepad or DrJava or any editor
you want. Make sure the file is in the same directory as file file-name.jar

(b) Type this command in the window:

jar -umf x.mf file-name.jar

The u stands for update, the m for manifest, and the f for file. Since the m comes

490 Appendix I Dealing with Java

before the f, the manifest file name, x.mf, comes before the file name. This com-
mand inserts into jar file file-name.jar the fact that method main appears in
class MainClass.

You can do both steps together —insert the classes and the main-class indi-
cation— by using the command:

jar -cmf x.mf file-name.jar *.class

You can email file file-name.jar to anyone, and they can run it on their
computer, whether it has a Unix, Macintosh, or Windows system, as long as their
system has Java in it. In some systems, you can run the program just by double-
clicking on the jar file. Otherwise, type this line (include the extension .jar):

java -jar file-name.jar

If you want to see what is in jar file file-name.jar, then type this:

jar tvf file-name.jar

You can find out more about the jar command by typing simply jar.

I.5 Java error messages

Method main of the class shown below tries to print the value of 5 / 0:

public class Ex {

public static void main(String[] args)

{ System.out.println(5 / 0); }

}

Division by 0 is not defined, so the attempt to divide by 0 is an error. Java han-
dles this error by throwing an exception, which causes the program to terminate
abnormally, with the following messages in the Java console:

Exception in thread "main" java.lang.ArithmeticException: / by zero
at Ex.main(Ex.java:3)

(The first part of the first line, which says that an exception occurred in
thread main, may be missing, depending on which IDE you use.) The important
information on the first line is that an ArithmeticException occurred, a divi-
sion by zero. The second line says where the exception occurred: in method main
of class Ex, on line 3 of file Ex.java.

There may be more information following the second line, depending on the
IDE you use, but it is not important and you can disregard it.

The call-stack trace
When the program aborts because of an exception, you have to study the

program to find out why and correct the error. The Java console messages tell
you the kind of exception that occurred and the method that was being executed

Appendix I.5 Java error messages 491

at the time, and this can be helpful. But it contains a bit more. To illustrate, we
change the program so that the division by 0 occurs within a different method:

public class Ex {

public static void main(String[] args)

{ first(); }

public static void first()

{ second(); }

public static void second()

{ System.out.println(5 / 0); }

}

Suppose method main is called. Method main calls first, which calls sec-
ond, which divides by 0. The list of calls that have been started but have not com-
pleted is called the call stack. When the division by zero occurs, the same excep-
tion is thrown, and the following appears in the Java console:

java.lang.ArithmeticException: / by zero

at Ex.second(Ex.java:7)

at Ex.first(Ex.java:5)

at Ex.main(Ex.java:3)

As before, the first line says that an ArithmeticException occurred, which
was a division by zero. The second line says that the exception occurred in sec-
ond, at line 7 of file Ex.java. The third line says that second was called from
first, and the fourth line says that first was called from main.

Thus, when an exception occurs:

A message on the Java console describes the call stack: the stack
of methods that have been called but have not yet completed.

You can use this stack of calls to help figure out how your program got to the
point of throwing the exception.

If your program aborts with one of these errors, there is a severe problem:

OutOfMemoryError

InternalError

UnknownError

In the first case, you have to find out why your program used too much memo-
ry. In the other two cases, it is difficult to say what to do. Something caused
things to become really messed up. Perhaps recompiling all files may help.

492 Appendix I Dealing with Java

Appendix II

Java API and Javadoc

OBJECTIVES

INTRODUCTION

The Java API specifications describe what each class is for and how it is to be
used. It describes the methods and fields within a class that can be accessed and
what they do. These specifications are on the world wide web, so you have to be
connected to the internet to use them.You can download the specifications, but
they take a lot of space. If you can usually work with a connection to the inter-
net, you are better off doing that rather than downloading.

The Java API specifications were extracted from the Java API .java files
automatically, using a program called Javadoc. You, too, can use Javadoc to
extract specifications of your programs, provided you write your comments in a
special manner. We show you how to do this in Sec. 2 of this Appendix.

II.1 The Java API Specifications

Where to find the Java API specifications
At the time of this writing, the Java API specifications were at this URL:

http://java.sun.com/j2se/1.4.1/docs/api/index.html

This is the specifications for Java 1.4.1. If there is a later version when you
read this, browse until you find it or ask your instructor where a newer version
might be. Actually, for what you are doing based on this book, you could use this
version as well as a newer one; most of the changes will not affect you.

• Describe how to locate and use the specifications of classes in the Java API.
• Investigate extracting specifications from annotated programs.

494 Appendix II Java API and Javadoc

Figure II.2: The main pane shows information about class Math

Figure II.1: First page of the Java API Specifications

Looking at the Java API specifications
Bring up the specifications in some browser. You will see something similar

to the page that is displayed in Fig. II.1. The small pane on the upper left con-
tains a list of the Java packages, and the pane on the lower left contains a list of
all the classes in those packages (as well as items called interfaces; we do not
deal with them now). Both of these panes are scrollable, so you can easily find
what you are looking for (if you know what that is).

The main pane on the right contains a horizontal button bar, whose items are
fairly self-explanatory. (Deprecated means lessened in value, and Java uses the
term for classes and methods that have been superceded by better ones. You can
still use the deprecated ones, and we do from time to time.) The lower part of the
main pane contains a list of packages in the Java API.

Here is how we usually work to access the spec of a particular class, say
Math, in package java.lang. First, use the scroll bar in the upper left pane to
make java.lang visible. Click on java.lang. The lower left pane will change
to show only the interfaces and classes in that package. Now, use the scroll bar
in the lower left pane to make Math visible and click on it. When the main pane
changes, scroll down a bit until it looks like Fig. II.2.

In the main pane, you now see a description of class Math. Scroll down
slowly, and you will see a “summary” of the fields and of methods. These sum-
maries tell you a little about the fields and methods of the class. For example, the

Appendix II.1 The Java API specifications 495

Figure II.3: Extensive description of function abs

first entry in the Method summary is for function abs, and we see that it has
attribute static, that it produces a double value, and that it has a double param-
eter (named a). We also see that it returns the absolute value of a double value:

There is a second function with the same name, which returns a float value.
Click on the underlined word abs, which is a link to another part of the same

web page. The main pane changes to display a more extensive description of the
method, as shown in Fig. II.3. This description even tells you what “absolute
value” means.

What else can you do?
We have shown you the basic ideas of looking at specifications of classes

and methods. There are a few other things you can do using the icons at the top
of the web page. For example, clicking Index will bring up a page that contains
an alphabetical listing of all the packages, classes, interfaces, methods, and fields
in the API packages.

Also, if you do not like frames, click the NO FRAMES link.
Experiment with all the different features, in order to get a good idea what

is available in the Java API specifications. Get used to using this tool regularly,
whenever you need help with some predefined Java class.

II.2 Javadoc

You can extract specifications from your program if you annotate the program
appropriately. This requires placing Javadoc comments —comments of the form:

/** ... */

in appropriate places. The first sentence of the comment (everything up to and
including the first period “.”) is used in the summary portions of the Javadoc
documentation. The whole comment (without the comment delimiters) appears
in the detailed portions of the Javadoc documentation.

Since Javadoc documentation is meant mainly for users of classes, Javadoc
generally extracts specifications only for public classes, methods, and fields, —
those that the user can use. Therefore, such public entities are the prime targets
for Javadoc comments. However, it is possible to set a switch that forces Javadoc
to extract comments from private entities as well.

We now discuss briefly the placement of Javadoc comments.

496 Appendix II Java API and Javadoc

1. Before each class. Place a Javadoc comment that explains what an instance of
the class is. For example:

/** An instance of the class is a shape, like a polygon. */

You can, of course, place a lot more details in this Javadoc comment. These
details can give more information on each instance and, more importantly,
explain how to use the class, give the author and date finished, and so on. Look
at the Java API specifications to get some idea on this comment.

2. Before each method. Place a Javadoc comment that specifies the method.
Method specifications are discussed in Sec. 13.3.

3. Before each declaration of a variable in the class. Place a Javadoc comment
that describes the meaning of the variable, as discussed in Sec. 13.4.

Extracting Javadoc comments
The end of Appendix I.2 contains instructions for extracting Javadoc com-

ments when using DrJava. Appendix I.3 contains instructions for extracting
Javadoc comments in a command-line window or MDOS window.

Appendix II.2 Javadoc 497

Appendix III

Number Systems and
Logarithms

OBJECTIVES

INTRODUCTION

In Sec 1.1, we introduced briefly binary, octal, decimal, and hexadecimal sys-
tems. The binary number system was said to be important because computers
store integers using binary. But binary numbers —and base-2 logarithms, which
we explain in this Appendix— arise in more ways than simply the storage of inte-
gers. For example, they arise in the explanation of the running time of many algo-
rithms, such as exponentiation xy, binary search, and quick sort.

We explain these number systems in more detail, showing how one can con-
vert an integer from one number system to another. With regard to logarithms, we
explain them only enough so that the running times of various algorithms can be
understood, and we keep the explanation simple.

III.1 Number systems

Below, we show the “digits” that are used in counting in four number systems:

binary: 0 1

octal: 0 1 2 3 4 5 6 7

decimal: 0 1 2 3 4 5 6 7 8 9

hexadecimal: 0 1 2 3 4 5 6 7 8 9 A B C D E F

The number of digits used is called the base of the number system. The binary
system has base 2; the octal system, base 8; the decimal system, base 10; and the

• Learn the binary, octal, decimal, and hexadecimal number systems.
• Be able to abbreviate binary numbers as octal or hexadecimal numbers.
• Be able to convert an int to its binary representation and back.
• Understand the basics of base-2 logarithms.

500 Appendix III Number systems and logarithms

hexadecimal system, base 16. In the hexadecimal system, we run out of the usual
one-character digits so we use the first six capital letters of the alphabet for the
last six digits.

Each of these systems uses a positional notation to represent the integers.
For example, consider the decimal number 536, which, to make clear that a base-
10 number is meant, we write as:

(536)10

The 6 is in the units position, the 3 is in the tens position, and the 5 is in the hun-
dreds position. This number is a representation for the quantity

5*102 + 3*101 + 6*100

Each of the digits 5, 3, and 6 is a base-10 digit, i.e. is in the range 0..9. A
k-digit decimal integer in the form dk-1...d2d1d0, where each di is in the
range 0..9 and dk-1 is not 0, represents the integer:

dk-1*10
k-1 + ... + d1*10

1 + d0*10
0

Here is an integer in the binary, or the base-2, number system:

Figure III.1: Integers in four number systems

0 0 0 0

1 1 1 1 20

2 2 2 10 21

3 3 3 11

4 4 4 100 22

5 5 5 101

6 6 6 110

7 7 7 111

8 10 8 1000 23

9 11 9 1001

10 12 A 1010

11 13 B 1011

12 14 C 1100

13 15 D 1101

14 16 E 1110

15 17 F 1111

16 20 10 10000 24

20 24 14 10100

64 80 40 1000000 26

decimal octal hexadecimal binary power of 2

(10110)2

The base is 2. The rightmost digit (or bit), 0, is in the units position, the 1 to its
left is in the twos position, the 1 to its left is in the fours position, the 0 to its left
is in the eights position, and the leading 1 is in the sixteens position. Because the
base is 2, this number is a representation for the integer that is the value of this
expression:

1*24 + 0*23 + 1*22 + 1*21 + 0*20

In general, a positive integer in the base 2 system has the form

(dk-1...d1d0)2,

where each di is either 0 or 1 and dk-1 = 1. Thus, k is the number of bits need-
ed to represent the integer without leading zeros. The value (dk-1...d1d0)2 is:

dk-1*2
k-1 + ... + d1*2

1 + d0*2
0,

i.e.

∑i in 0..k-1 di*2
i

In keeping with this representation, we represent zero by k = 0, i.e. with 0 bits.

The connection between binary, octal, and hexadecimal
Below, we show the first eight integers in binary and, underneath them,

their representation in octal:

000 001 010 011 100 101 110 111 (binary)
0 1 2 3 4 5 6 7 (octal)

Based on this description, you can see that to produce the octal representa-
tion from the binary representation, just replace each sequence of three bits
(starting with the least significant) by its octal representation. For example:

(101011)2 is (53)8
(1110101111)2 is (1657)8

In the same way, we can translate from binary to hexadecimal by replacing
each four-bit segment (starting with the least-significant bit, i.e. starting at the
right) by its one-character hexadecimal equivalent. Here are examples:

(1011)2 is (B)16
(101011)2 is (2B)16
(1011001110101111)2 is (B3AF)16

We often write numbers in hexadecimal rather than binary notation, even
though they are maintained in binary in a computer, because the hexadecimal
notation is more compact and easy to read and because we can easily translate
from one notation to the other.

For example, in a Java program, we can use the Unicode literal '\u0041' to

Appendix III.1 Number systems 501

represent the character 'A' because (0041)16 is the hexadecimal representation
of the integer (65)10 that represents the character A, but in the computer, this is
maintained as the binary integer (1000001)2.

Maintaining the binary representation in an array
When we keep the binary representation of a nonnegative integer n in an

array dwith the minimum number of elements, we place bit d0 in element d[0],
d1 in d[1], and so on. Thus, we can write:

n = ∑i in 0..d.length-1 d[i]*2i

This means that if n = 0, the array has 0 elements —yes, in Java, you can
create an array with 0 elements. If n = 8, array d is {0, 0, 0, 1}—our conventional
way of writing the array puts the least significant bit first, so we have to look at
the array in reverse to see it as a binary integer: 1000.

Converting an integer to base 2
Suppose int variable n contains a non-negative integer. We write a function

that produces the binary representation of n in an array d of exactly the right
length. Thus, each bit di shown above will be in array element d[i]. We inves-
tigate how to calculate the bits of the binary representation of n > 0, where:

n = dk-1*2
k-1 + ... + d1*2

1 + d0*2
0

From this formula, we see that:

n % 2 = d0

502 Appendix III Number systems and logarithms

/** = an array d[0..] that contains exactly the binary representation of n (n ≥ 0) */

public static int[] IntToBinary(int n) {

int[] d= new int[32];

int x= 0;

int k= 0;

// inv: the binary representation of n is:
// the binary representation of x followed by the reverse of b[0..k-1]
while (x != 0) {

d[k]= x % 2;

x= x / 2;

k= k + 1;

}

int[] dc= new int[k];

System.arraycopy(d, 0, dc, 0, k);

return dc;

}

Figure 1II.2: Function IntToBinary

and
n/2 = dk-1*2

k-2 + ... + d1*2
0

Therefore, the binary representation of n is:

the binary representation of n / 2 followed by the bit n % 2.

We can then find the next bit d1 in the same way from n / 2. This gives us the
idea for a loop invariant. We introduce a variable x and use the invariant:

invariant: the binary representation of n is:
the binary rep. of x followed by the reverse of d[0..k-1]

The function is in Fig. III.2. Initially, we don’t know how many bits there are in
the representation of n. Therefore, an array of the largest size possible is created
and used. We know the maximum size, 31, because the parameter is an int.
Then, at the end of the function body, we create an array of the right size and
copy the digits into this new array. Note that if n = 0, then k = 0 at the end, and
we are creating an array of 0 elements and copying 0 elements into it.

Converting from base 2 to an int
In Fig. III.3, we present a function to compute n from its binary representa-

tion in an array. The value of n is given by:

n = ∑i in 0..d.length-1 d[i]*2i

The formula for n is a polynomial whose coefficients are in array d, and n is most
efficiently calculated using a method called Horner’s scheme. To see this
scheme, write the polynomial as:

d[0] * 20 + d[1] * 21 + d[2] * 22 + … + d[3] * 23 + …

and factor out multiples of 2:

d[0] + 2 * (d[1] + 2 * (d[2] + 2 * (d[3] + …)))

Appendix III.1 Number systems 503

/** = the integer whose binary representation is in array d */
public static int BinaryToInt(int[] d) {

int x= 0;

int k= d.length;

// inv: 0 <= k <= b.length and
// x = d[k] + 2*(d[k + 1] + 2 * (d[k + 2] + 2 * (d[k + 3] + …)))

while (k != 0) {

k= k - 1;

x= x * 2 + d[k];

}

return x;

}

Figure 1II.3: Function BinaryToInt

Now, we can compute this formula from the inside out, maintaining always the
following value x, for some k:

x = d[k] + 2* (d[k+1] + 2 * (d[k+2] + 2* (d[k+3] + …)))

The elements of d that appear in this formula are d[k..d.length-1]. If k =

d.length, no elements of d are involved in the sum, and x is 0.

III.2 Base-2 logarithms

Figure III.4 contains the first five powers of two. The first column gives the inte-
gers in base 10; the second column, the integers written as a power of two; and
the third column, the integers written in binary. You can see a general rule for
writing powers of two in binary: the integer 2n is 1 followed by n zeros.

For a positive integer 2n, n is called the base-2 logarithm of n, written log2
n, or, when it is clear from the context, simply as log n. The last column of Fig.
III.4 gives the logarithms of the first five powers of 2.

We can define logarithm in another way:

For an integer k = 2n, log k is the number of times you have to
multiply 2 by itself to get k.

We have described logarithms using examples that were powers of 2, but
log k is defined for any positive number k. For example: log 12 is
3.5849625007211565... because:

12 = 23.5849625007211565...

However, in this book, we never require calculation of logarithms of arbitrary
numbers, and if you understand logarithms only for powers of 2, that is fine.

504 Appendix III Number systems and logarithms

integer as a power of 2 in binary logarithm

1 20 1 0

2 21 10 1

4 22 100 2

8 23 1000 3

16 24 10000 4

Figure 1II.4: Powers of 2 and their logarithms

Appendix IV

Correctness of Programs

OBJECTIVES

INTRODUCTION

In this appendix, we show how to specify a program segment in terms of a pre-
condition and postcondition. We then look at how the assignment statement, if-
statement, and loop can be defined —not in terms of how they are executed but
in terms of when a precondition-statement-postcondition triple {Q} S {R} is true.
We discuss how these ideas can be used to develop sequences of statements, with
the proof ideas leading the way.

We use the boolean implication operator => (which will be defined at the
appropriate time). We also introduce the notion of an axiom. An axiom is a basic
true-false statement that we assume to be true —it is a postulate, a theorem
accepted without proof. Also, we will introduce inference rules, which are used
to generate new theorems from old ones.

We confine our attention to the empty statement, the assignment statement,
the conditional statement, and the while-loop.

A major principle is that the task is not to prove an existing program correct
but to develop a program and its proof hand-in-hand —with the proof ideas lead-
ing the way. A second principle is that parts of a program can be calculated, rather
than guessed. Most of our examples are necessarily very simple, in order to
explain the ideas. But see Sec. IV.6 for a real illustration of the power of the
methodology.

While the ideas concerning program correctness may be formal, they can
(and perhaps should) be utilized in an informal manner in most cases. In fact, we

• Outline the basic ideas of proving a sequence of statements correct.
• Outline how to develop a program and its proof hand in hand, with the

proof ideas leading the way.

506 Appendix IV Correctness of programs

do use them all the time when we develop an invariant for a loop from its spec-
ification and then develop the loop from the invariant, as shown in Chap. 7.

This material necessarily is terse and compact. It is not a tutorial but a brief
summary of the material. For more information, turn to a text like The Science of
Programming, by David Gries (Springer-Verlag, 1981).

IV.1 Hoare triples

Recall from Sec. 2.6.2 that an assertion is simply a true-false statement placed
before or after a statement in a program, with the intent that it should be true at
that place. An assertion placed before a statement is a precondition of the state-
ment; an assertion placed after the statement is a postcondition of the statement.
For example, consider the following:

{x = 0}

x= x + 1;

{x > 0}

In this appendix, we write assertions within bold braces. The field of formal
development of programs uses plain braces { and }, but they cannot be used here
because they already have a meaning in Java. We could place the assertion with-
in comment symbols, but this gets too cumbersome.

Such an assertion-statement-assertion triple is called a Hoare triple, after
Tony Hoare, who invented the notation in about 1969. It has this meaning:

Suppose the precondition (in the above case, x = 0) is true and the
statement (x= x + 1;) is executed. Then, execution is guaranteed
to terminate, and when it does, the postcondition (x > 0) will be
true.

Note that the Hoare triple is itself a true-false statement. We can write false
(or erroneous) ones. Below, we give some Hoare-triples and indicate whether
they are true or not.

{x = 0} x= x – 1; {x < 0}

This triple is true.

{x = 0} x= x – 1; {x = 0}

This triple is false.

{true} if (x > y) Swap x and y { x ≤ y}

This triple is true.

{false} x= 1; {x = 0}

This triple is true. In no state is false true. Hence, in every state in which
the precondition is true (there are none), execution terminates with the post-
condition true. If the precondition is false, the postcondition can be any-
thing.

{x > 0} while (x > 0) x= x+1; {x = 0}

This triple is false. The statement does not terminate in all states in which
the precondition is true.

{true} x= 1; {false}

This triple is false. The statement is guaranteed to terminate, but when it
does, the postcondition will not be true.

{true} while (Math.random() != .5) {false}

This triple is false. Termination of the loop is not guaranteed.

Specification of a program segment
We can use the Hoare triple to specify what a program segment —say, a

sequence of statements— is supposed to do. Generally, we also have to say what
variables the program segment may or should change. Here are examples. Each
example specifies the statement by giving a command that says what it should do
and then writes the specification as a Hoare triple.

1. Specification of a statement S: Given y > 0, store xy in z. In other words,
write a program segment S that satisfies the following Hoare triple, where S
changes only z (S may, of course, change local variables declared in it):

{y ≥ 0} S {z = xy}

2. Specification of a statement S: Set z to the maximum of x and y. In other
words, write S to store in z so that:

{true} S {z = max(x, y)}

3. Specification of a program S: Sort array b. The specification:

{true} S {b is in ascending order}

is not completely satisfactory because S could simply set all elements of array b
to 0. We could say in English that S may only swap elements of b. But to place
the requirement that S only permute the elements of b in the Hoare triple itself,
do the following. First, introduce boolean function perm(b, B) with definition:

perm(b, c) = “array b is a permutation of array c”

Then, write the Hoare triple as:

{perm(b, B)} S {perm(b, B) and b is in ascending order}

Here, B is taken to be a virtual constant —meaning that it cannot be used in state-
ment S, so it cannot be changed. The specification says that if b is a permutation
of some array B, then after execution of S, b is still a permutation of B and, fur-
thermore, b is in ascending order.

4. Specification of a program S: Swap x and y, if necessary, to truthify x ≤ y.
We use two virtual constants X and Y:

Appendix IV.1 Hoare triples 507

{perm({x, y}, {X, Y})} S {perm({x, y}, {X, Y}) and x ≤ y}

5. Specification of a program S. Print x on the Java console, followed by a line
feed. We can write this as a Hoare triple if we use a String variable javaConsole
(say) to denote the Java console. Again using a virtual constant, we have:

{javaConsole = JV} S {javaConsole = JV + x + "\n"}

This example shows how we can deal with statements that print on the Java con-
sole or some file.

IV.2 Two inference rules

Suppose we know that the following Hoare triple is true:

{x ≥ 0} S {y = x and z = x+1}

Then, we can also conclude that statement S does its job in an initial state in
which x = 0 and in a final state in which z = x+1:

{x = 0} S {y = x and z = x+1}

{x ≥ 0} S {z = x+1}

That is, we can replace the precondition by something that implies it, and we can
replace the postcondition by something that it implies. We might write this as:

{x = 0}

{x ≥ 0}

S

{y = x and z = x+1}

{z = x+1}

Thus, if we have two adjacent assertions, the rule is that the first must imply the
second, i.e. whenever the first is true, the second must be true too. We might do
something like this if we are interested only in the “stronger” precondition, in
this case x = 0, or the “weaker” postcondition, in this case, z = x+1.

To formalize these notions, we use the logical operator implication
operation b => c, which is defined as follows:

Definition of implication =>

false => false is true
false => true is true
true => false is false
true => true is true

Note: Boolean expression P is stronger than boolean expression Q if P is true in
fewer states than Q. We also then say that Q is weaker than P. Here is a more pre-
cise definition:

508 Appendix IV Correctness of programs

Definition of stronger/weaker: P is stronger than Q and Q is
weaker than P if P => Q is always true.

An inference rule allows us to infer that some conclusion is true based on
some initial premises. We write an inference rule in this form:

inference rule: Provided premise 1, premise 2,
we conclude: conclusion

For example, the first inference rule below allows us to strengthen the precondi-
tion, while the second allows us to weaken the postcondition:

Strengthen precondition rule: Provided P => Q, {Q} S {R}

we conclude: {P} S {R}

Weaken postcondition rule: Provided R => T, {Q} S {R}

we conclude: {Q} S {T}

IV.3 Axiomatic definition of statements

We now define the skip statement, assignment statement, sequence of state-
ments, conditional statements, and while-loop using Hoare triples. We call the
definitions axioms because they are “truths” that we take to hold without formal
proof. This is necessarily a brief introduction, and some explanations as well as
some of the nuances are left untold. We first introduce notation. The notation:

[v\e]R

denotes a copy of assertion R in which each occurrence of variable v has been
replaced by expression e. For example:

[v\v+1](v ≥ w) is v+1 ≥ w

[v\x+y](x*v = v) is x*(x+y) = (x+y)

We extend this notation to the following, to denote a copy of R in which v and
w have been simultaneously replaced by expressions —extension to more than
two variables is assumed as well:

[v,w\e,f]R

denotes a copy of expression R in which occurrences of v and w have been simul-
taneously replaced by expressions e and f. Here are examples:

[v,w\w,v](v ≥ w) is w ≥ v

[x,n= x+b[n],n+1](x is the sum of b[0..n–1])
is x+b[n] is the sum of b[0..n+1–1])
which can be rewritten as x is the sum of b[0..n–1])

Appendix IV.3 Axiomatic definition of statements 509

IV.3.1 Empty statement

The empty block {} does absolutely nothing, but very fast. In some languages, it
can be written as skip. In others, a semicolon by itself denotes a skip statement.
Thus:

x= x+1; ;

consists of two statements: the first increments x; the second does nothing.
We can define the skip as follows:

skip axiom. For all assertions R,
{R} skip {R}

This makes sense. If R is true, and nothing is done, then R is still true.

IV.3.2 Assignment statement

The assignment statement is defined as follows:

Assignment statement axiom. For all assertions R,
{e is well-defined and [v\e]R} v= e; {R}

At first glance, this definition looks backward; one feels that the postcondition,
not the precondition, should include [v\e]R, since the assignment stores e in v.
However, the definition is correct. It shows how one can compute the necessary
and sufficient precondition such that execution of the assignment terminates with
R true. We will give examples in a moment.

The first part of the precondition, “e is well-defined”, is present in order to
ensure that evaluating e does not cause an exception. Here are possible expres-
sions e and the accompanying expression “e is well defined”:

b[i] 0 ≤ i < b.length

x / y y != 0

s.charAt(k) 0 ≤ k < s.length()

One can use different versions of “e is well-defined”, depending on one’s
needs. For example, suppose x and y have type int. Here are two possibilities
for “x+y is well-defined”. Use the first to get a general handle on correctness of
a program, assuming that “God’s integers” are being used; use the second when
complete correctness, down to not having arithmetic overflow, is required:

(1) First alternative: true
(2) Second alternative: abs(x+y) ≤ INTEGER.MAX_VALUE

Below, we give examples of uses of the assignment statement axiom. We omit
the term “e is well-defined” when it is true.

510 Appendix IV Correctness of programs

1. {0 = 0} x= 0; {x = 0}

2. {x+1 = 0} x= x+1; {x = 0}

3. {x + n+1 = sum of 1..n} x= x + n+1; {x = sum of 1..n}

4. {x = sum of 1..n-1} n= n-1; {x = sum of 1..n}

5. {b = z*x*xy} z= z*x; {b = z*xy}

6. {b = z*x*xy-1} y= y-1; {b = z*x*xy}

7. {0 = a*(2*y)2 + b*(2*y) + c} y= 2*y; {0 = a*y2 + b*y + c}

Take a look at the following use of the assignment statement axiom:

{y = 0} x= e; {y = 0}

Any constant could be substituted for 0, and any variable (except x) could be
substituted for y. Thus, this Hoare triple indicates that an assignment to x cannot
change any other variable! No side effects are allowed during evaluation of e. For
example, evaluation of e cannot call a function that changes a field of an object
that is visible where this assignment statement is, for that would be a side effect.

A form of assignment statement axiom can be developed that caters to side
effects, but it is far more complicated. If you want to use the simple assignment
statement axiom that we have introduced, you cannot allow side effects.

IV.3.3 Multiple assignment statement

A favorite assignment statement among people in the formal development of pro-
grams is the multiple assignment statement, which allows several variables to be
assigned simultaneously. The first multiple assignment below swaps the values
of x and y. The second rotates the values u, v, and w. With the third, if x is 4 ini-
tially, upon termination x is 5 and y is 4:

x, y= y, x;

u, v, w= v, w, u;

x, y= x+1, x;

The multiple assignment is not a Java statement. When developing program,
use of the multiple assignment along the way helps understanding and helps
reduce errors. Below is the multiple-assignment definition for assignment to two
variables. It extends in the obvious way to more variables.

Multiple-assignment statement axiom. For all assertions R,
{e is well-defined and [v,w\e,f]R} v, w= e, f; {R}

IV.3.4 Sequencing

We give an inference rule that allows us to conclude:

Appendix IV.3 Axiomatic definition of statements 511

{Q} S1; S2 {R}

where S1 and S2 are statements. If we can find an assertion P (say) that satisfies

{Q} S1 {P} and {P} S2 {R}

then we know that execution of S1 begun with Q true will terminate with P true
and that subsequent execution of S2 will terminate with R true. Hence, we have
the inference rule:

Sequencing rule: Provided {Q} S1 {P}, {P} S2 {R}

we conclude: {Q} S; S2 {R}

We give an example of the use of the sequencing rule. In fact, we use it and
the assignment statement rule to prove that the following sequence swaps the
values of x and y:

t= x; x= y; y= t;

Moreover, we prove this fact by starting with the postcondition and computing a
precondition of the sequence, as follows. Consider postcondition R:

R: x = X and y = Y

where X and Y are names of virtual constants (they cannot be used in the code).
First, use the assignment rule to compute precondition P1 in {P1} y= Y {R}:

{P1: x = X and t = Y}

y= t;

{R: x = X and y = Y}

Now use P1 as the postcondition for the second statement and compute its pre-
condition P2. Finally, use P2 as the postcondition for the first statement and cal-
culate its precondition:

{Q: y = X and t = Y}

t= x;

{P2: y = X and t = Y}

x= y;

{P1: x = X and t = Y}

y= t;

{R: x = X and y = Y}

Now use the sequencing rule to eliminate P1 and P2 and end up with:

{Q: y = X and t = Y} t= x; x= y; y= t; {R: x = X and y = Y}

This Hoare triple tells us that the sequence swaps the values of x and Y.
Note that we calculated the precondition from the sequence of statements

and the postcondition. The precondition was not given to us; we calculated it. In
general, we try to calculate preconditions in this fashion.

512 Appendix IV Correctness of programs

IV.3.5 Conditional statements

Consider an if-statement with a pre- and a post-condition:

{Q} if (B) S {R}

What do we need to know to see that this Hoare triple is true? First, if B is false,
then S is not executed, so R must be true in the initial state. Thus, we have the
premise: Q and B => R. Second, if B is true, execution of S begun with Q and B
true has to make R true, so we have the premise: {Q and B} S {R}. Thus, we
end up with this inference rule concerning the if-statement:

if-rule: Provided Q and B => R, {Q and B} S {R}

we conclude: {Q} if (B) S {R}

You can see that the if-statement rule simply states what any programmer
would have to do to understand that the if-statement does its job. There is noth-
ing magic or special about it. In the same way, we have the following inference
rule for the if-else statement:

if-else-rule: Provided {Q and B} S1 {R}, {Q and !B} S2 {R}

we conclude: {Q} if (B) S1 else S2 {R}

IV.3.6 The while-loop

We now define the while-loop:

{Q} while (B) S {R}

in terms of an inference rule. We need to develop some premises from which we
can conclude that the above holds. This will require us to use an assertion P,
which we call the invariant of the loop because it will be true before and after
execution of repetend S. To show this, we annotate the loop as follows:

{Q}

{P}

while (B)

{P && B} S {P}

{P && !B}

{R}

From this annotation, we can see that {Q} while (B) S {R} holds under the
following conditions:

1. Q => P
2. {P && B} S {P}

3. P && !B => R
4. The loop terminates

This leads to the following inference rule:

Appendix IV.3 Axiomatic definition of statements 513

while-rule: Provided Q => R, {P and B} S {P}, P and !B => R,
and the loop terminates,
we conclude: {Q} while (B) S {R}

The last question to answer is: how do we show that the loop terminates?
The only way it could not terminate is if the loop condition never became false,
so we need a way to prove that it does.

A bound function t for a while-loop is an integer expression in the variables
used by the loop that satisfies two properties:

1. Each iteration of the loop decreases t, which we formalize as:

{P && B} tsave= t; S {t < tsave}

2. If there is another iteration to go, then t is greater than 0:

P && B => t > 0

Bound function t is an upper bound on the number of iterations still to be
performed. Each iteration decreases t by at least 1. Further, if it ever becomes 0
(or less than 0), then, because of point 2 and because P is true before and after
each iteration, B is false and the loop terminates. So, we have the fact that:

termination: The loop terminates if there exists a bound function
t for it.

At the beginning of this subsection, we showed the annotated loop, with
invariant P written in several places, as well as assertion P && ! B. To save writ-
ing so many assertions, we abbreviate and annotate the while-loop like this:

{ Q }

// invariant: P: (here we given the invariant)
// bound function: t (here we give the bound function)
while (B)

S

{ R }

This ends our discussion of the definitions of the basic statements in terms
of Hoare triples. In the next section, we investigate developing programs using
these definitions.

IV.4 Developing simple programs

One of the important principles is that a program and its proof should be devel-
oped hand-in-hand, with the proof ideas leading the way. Further if used proper-
ly, one can even calculate parts of programs, instead of trying to guess them in
an ad hoc fashion.

514 Appendix IV Correctness of programs

This text is not the place for a full-blown discussion of developing program
and proof hand-in-hand, and we limit ourselves to a few examples. In this appen-
dix, we are trying to show some of the thought processes that could be used to
solve programming problems. Necessarily, we use as examples programs that are
so simple that the methods might not be needed. You may not have thought about
how you go about writing a program segment; here, you have a chance to think
about and study that process to some extent. See Sec. IV.6 for an example in
which the methodology really helps.

Finding the maximum
We begin with the problem of storing the maximum of two values in a vari-

able, i.e. we write a program segment S that satisfies the following specification:

{true} S {R: z = max(x, y)}

where R names the postcondition.
To solve this problem, we have to know what “maximum” means. One way

to define it is to rewrite the postcondition as follows:

R: (z = x && x ≥ y) || (z = y && y ≥ x)

Now, concentrate on R and ask yourself what statement might truthify it —per-
haps not in all cases, but at least in some.

There are two obvious answers: the assignments z= x; and z= y; because,
according to R, z will equal x or z will equal y. We investigate using the first
assignment. Will it do the job in all required cases? We can see this by calculat-
ing the precondition [z\x]R of {[z\x]R} z= x; {R}

[z\x]R

= <Definition of R; perform the substitution>
(x = x && x ≥ y) || (x = y && y ≥ x)

= <x = x is true; x = y && y ≥ x equals x = y>
x ≥ y || x = y

<Note that x = y => x ≥ y>

= x ≥ y

Therefore, the assignment z= x; does the job if and only if x ≥ y. So, we
will need an if-else statement:

if (x >= y) z= x;
else ?

where we still have to figure out what to do in the case x < y.
We can then perform the same kind of process with the second assignment,

z= y;. However, a mathematician would simply note that, by symmetry, in the
case y ≥ x, the assignment z= y; will do. Thus, we end up with the statement:

Appendix IV.4 Developing simple programs 515

if (x >= y) z= x;
else z= y;

The astute reader will have noticed that we were not completely formal.
And in general, we do not have to be completely formal. Use just enough for-
mality to be convinced that the result is correct, and the harder the problem the
more formality is needed!

This example brings out two important points. First, it illustrates that pro-
gramming is a goal-oriented activity. It is the postcondition that is most impor-
tant at the beginning, not the precondition. The goal, postcondition R, was what
we looked at for insight in starting the development.

Second, we were able to calculate the if-condition, not guess at it. Of course,
in this case, we could have easily guessed the if-condition, but there are situa-
tions in which calculation is a far better tool than guessing or intuition, which
until now have been the programmers’ main tools. In some cases, the methodol-
ogy we are proposing can lead to programs that you would not have thought of
without using the methodology.

Calculating an expression
Consider the following specification for a partially completed multiple

assignment statement:

{P} x, k= E, k+1; {P}

where assertion P is:

P: x = sum of squares of 0..k-1

Note that the precondition and postcondition are the same, and that k is being
incremented. We want to know what expression E to assign to x so that this Hoare
triple is true.We discuss the solution of such problems.

Using the multiple assignment statement axiom, we can place another asser-
tion after the precondition:

{P} {[x,k\E,k+1]P} x, k= E, k+1; {P}

Thus, for this to be a true Hoare triple, the following must hold:

P => [x,k\E,k+1]P

We can calculate E in (at least) two ways: (1) Assume that P holds and massage
[x,k \ E, k+1]P into a formula for E, and (2) Massage P until it has the form
[x,k \ E, k+1]P. Each method has its own situations where it seems easier.
Here, let us try method (2) —the reader should try method (1):

P

= <Definition of P>
x = sum of squares of 0..k-1

= <Arrange formula so that it contains “sum of squares of

516 Appendix IV Correctness of programs

0..(k+1)-1”>
x = (sum of squares of 0..(k+1)-1) - k*k

= <Rearrange>
x + k*k = (sum of squares of 0..(k+1)-1)

The last formula has the desired form, [x,k\E,k+1]P, where E is x + k*k.
Thus, the Hoare triple can be written as follows:

{P} x, k= x + k*k, k+1; {P}

In this case, we wanted to increment k and had to determine what to assign
to x so that P would be maintained. We did not guess what to assign to x; we cal-
culated it. We moved the problem away from programming into the realm of
logic and arithmetic.

This problem is so simple that perhaps calculation is not necessary to solve
it. However, in many cases, such calculation can save the time of repeatedly
guessing and testing until one has, by chance, discovered the right expression E.
An example of this appears in Sec. IV.6.

IV.5 Developing loops

Chapter 7 discusses the development of a loop:

{ Q }

// invariant: P
// bound function: t
while (B)

S

{ R }

in terms of four loopy questions:

1. How does it start? (The initialization should truthify Q.)
2. When does it end? (P && !B should imply R.)
3. How does it make progress? (Each iteration must reduce t.)
4. How does it fix the invariant? (the repetend must satisfy {P && B} S {P}.)

Each of the four loopy questions deals with one of the premises of the while-
loop inference rule. Chapter 7 dealt informally with termination rather than use
a bound function. So, Chap. 7 was really working with this inference rule. In
Chaps. 7 and 8, many loops were developed using the four loopy questions.

Therefore, in this section, we discuss only two issues: (1) how to find invari-
ants and (2) how to develop the repetend of a loop.

IV.5.1 Developing the invariant

Below is the fully annotated while-loop. This annotation shows us that invariant

Appendix IV.5 Developing loops 517

is P true before and after the loop. It is more general than Q and R. Thus, in devel-
oping the invariant, we seek to generalize either Q or R.

{Q}

{invariant: P}
{bound function: t}
while (B)

{P && B} S {P}

{P && !B}

{R}

Usually, but not always, generalizing R is most useful. Here are some ways to
generalize R.

Generalize R by replacing an expression by a fresh variable
We used this technique when writing a loop to process a range m..n-1 of

integers, where it is assumed that m and n should not be changed. Suppose the
postcondition is:

R: integers m..n-1 have been processed

Then we replace n by a fresh variable k and get the invariant:

P: integers m..k-1 have been processed

The loop will start with k = m, since initially no integers have been processed, and
terminate with k = n. It usually helps (or is even formally necessary, usually to
prove termination) to place the conjunct m ≤ k ≤ n in the invariant:

P: m ≤ k ≤ n and integers m..k-1 have been processed

If we want to process the integers from highest to lowest, we replace m (instead
of n) by a fresh variable and use the invariant:

P: m ≤ k ≤ n and integers h..n-1 have been processed

This is the basis for all loops that process each integer in some range m..n-1,
including array algorithms like linear search, selection sort, and insertion sort.

Sometimes, we can determine what variable to use by attempting to initial-
ize variables so that the postcondition is true. An example is in binary search.
Initially, array segment b[h..k] is in ascending order, and we want to store an
integer in variable i so that:

R: b[h..i] ≤ x < b[i+1..k]

Setting i to h-1 truthifies b[h..i] ≤ x; setting i to k truthifies x < b[i+1..k].
We cannot do both at the same time, so we break the dependence of the formula
x < b[i+1..k] on i by replacing expression i+1 by a fresh variable j and end
up with this loop invariant:

518 Appendix IV Correctness of programs

P: b[h..i] ≤ x < b[j..k]

We could have replaced i instead of i+1 by j and developed the different loop;
trying both, once sees later that the alternative we chose is easier to work with.
Also, at some point, formally, we will need to bound i and j, and we end up
using as the invariant:

P: b[h..i] ≤ x < b[j..k] and h-1 ≤ i < j ≤ k+1

Developing the invariant using the technique of replacing an expression by a
fresh variable is usually easy, although in some cases it requires practice and
experience to be able to see which expression is the better one to change.

Delete a conjunct
The boolean expression X is weaker than, or more general than, the expres-

sion X && Y. If X && Y is the desired postcondition, a possible invariant is the more
general X (or the more general Y). Here we get the invariant from the postcondi-
tion by deleting a conjunct.

Generally, one decides to delete a conjunct by investigating what it takes to
truthify the conjuncts of the invariant with simple assignments.

For example, consider a linear search for the index of the first value x in an
array segment b[h..k-1]). The postcondition is:

R: x is not in b[h..i-1] and (i = k or x = b[i])

We can truthify the first conjunct using i= h;. We can truthify the second con-
junct by setting i to k, but then the first conjunct will not necessarily be true. We
can delete the second conjunct and use this for the invariant:

P: x is not in b[h..i-1]

Here is another example. Suppose we want to find the largest power of 2 that
is at most N, for some N > 0. Here is the postcondition:

R: p is a power of 2 and p ≤ N and N < 2*p

The first and second conjuncts are easy to truthify using p= 1;. The third is hard-
er to truthify, so we delete it and end up with the invariant:

P: p is a power of 2 and p ≤ N

Here is third example. We want to find the quotient q and remainder r when
nonnegative x is divided by nonzero y. The postcondition is this:

R: x = q * y + r and 0 ≤ r and r < y

The first two conjuncts are truthified by q= 0; r= x;. Taking the first two con-
juncts as the invariant, we see that the purpose of the loop will be to reduce r
until the third conjunct is true —of course, while maintaining invariant P:

P: x = q * y + r and 0 ≤ r

Appendix IV.5 Developing loops 519

Dealing with pictures of arrays
Most algorithms that manipulate arrays require loops of some sort, and some

people prefer writing the pre- and post-conditions —and hence the invariant—
using array pictures. In many cases, the invariant can be seen to be a generaliza-
tion of both the pre- and the post-condition.

Here is an example. Below, we specify a sorting algorithm:

Invariant P is a generalization of the precondition, so P, drawn as a picture, needs
a segment labeled “?”. P is also a generalization of the postcondition, so it needs
a segment labeled “sorted”. Thus, we use one of the following two alternatives
as the invariant. The first results in a loop that sorts from beginning to end; the
second, from end to beginning. (Of course, we have to label the boundary
between the two segments.):

or

This business of developing the invariant as a picture that generalizes both
the pre- and the post-condition works quite well. Often it allows one to analyze
different algorithms for the same problem —the algorithms being expressed as
invariants— without writing a line of code.

Discussion
The three methods of developing an invariant work well in many cases.

Sometimes, they are only the start of the development of a full invariant in that
a simple but inefficient loop is developed from the invariant. Then, one may have
to strengthen the invariant (put more information in it) to remove the inefficien-
cies. But that topic is beyond the scope of this appendix (although it is a neat ,
useful idea).

Do not expect the methods discussed above to work in all cases. Sometimes,
an additional idea is needed, which is not easily seen. Sometimes, the formal def-
inition of whatever is being manipulated will provide insight into possible invari-
ants.

h k

invariant P: b ? sorted

h k

invariant P: b sorted ?

h k

Postcondition: b sorted

h k

Precondition: b ?

520 Appendix IV Correctness of programs

IV.5.2 Developing the repetend

The repetend of a while-loop has to do two things: make progress toward termi-
nation and keep the invariant true. Suppose we look at maintaining the invariant
for insight into the development of the repetend. All we can write is:

{P && B} skip {P}

because skip is the simplest way to maintain P, and there is little to suggest
doing something else.

Thus, when beginning development of the repetend, we should first see how
to make progress toward termination. Suppose making progress is done by incre-
menting k. The annotated repetend will be:

{P and B} S; k= k+1; {P}

where statement S is to be determined. Using the assignment statement axiom,
insert the precondition of the increment:

{P and B} S; {[k\k+1]P} k= k+1; {P}

This means that S has to satisfy the specification

{P and B} S; {[k\k+1]P}

and we can now begin to develop S to satisfy it.
This is top-down programming, or stepwise refinement, at its best. We de-

cide how to make progress; we calculate the specification of statement S that is
required to maintain the invariant, and we develop S to satisfy its specification.

Here is an example. Suppose invariant P is:

P: the squares of h..k-1 have been printed

and progress is to be made using k= k+1;. Then S has to satisfy:

{the squares of h..k-1 have been printed and B}

S;

{the squares of h..k have been printed}

and S is obviously System.out.println(k*k);.
Suppose the squares are being printed in reverse order, so that progress is

made by decreasing h. Then the annotated sequence is:

{P and B} S; {[h\h-1]P} h= h-1; {P}

so S has to satisfy:

{the squares of h..k-1 have been printed and B}

S;

{the squares of h-1..k-1 have been printed}

So, statement S has to print (h-1)*(h-1).

Appendix IV.5 Developing loops 521

IV.6 A neat example: fusc

Consider a function f defined as follows —e.g. f(13) is 5.

f(0) = 0

f(1) = 1

f(2*n) = f(n) (for n > 0)

f(2*n+1) = f(n) + f(n+1) (for n > 0)

We want a program segment S that, given N ≥ 0, calculates f(N). One idea
would be to assign N to a fresh variable n and then repeatedly decrease n, main-
taining some invariant, until n is 0 or 1. The first, naive, invariant would then be:

f(N) = f(n)

Indeed, if n is even, we can divide n by 2 and the invariant is maintained (since
f(2n) = f(n). But if n is odd, there is no way to decrease n and keep this invari-
ant true. The invariant is too simple.

Where do we look for inspiration in developing the invariant? The only pos-
sible place is the definition of f. Even a postcondition like f(N) = b (meaning b
contains the answer) would not help. In Sec. IV.4, in developing a program seg-
ment to calculate max(x, y), we also had to turn to the definition of max. Here,
it is the same thing: a definition provides the inspiration.

Notice that the right sides of two recursive formulas for f:

f(2*n) = f(n)

f(2*n+1) = f(n) + f(n+1)

are linear combinations of f(n) and f(n+1):

f(2*n) = 1*f(n) + 0*f(n+1)

f(2*n+1) = 1*f(n) + 1*f(n+1)

and this inspires us to try an invariant in which the righthand side is a (more gen-
eral) linear combination of f(n) and f(n+1):

P: f(N) = a*f(n) + b*f(n+1)

Now, we write the loop, hoping that we can make progress by halving n at
each iteration —but we assume we would need two cases, depending on whether
n is even or odd. We have skipped all the obvious steps of this development.

{N >= 0}

n= N; a= 1; b= 0;

{invariant P: f(N) = a*f(n) + b*f(n+1)}
while (n != 0) {

if (n is even) n, a, b= n/2, E, F;
else n, a, b= n/2, G, H;

}

{f(N) = b}

522 Appendix IV Correctness of programs

where it remains to determine expressions E, F, G, and H. We calculate E and F,
leaving G and H to the reader, using the technique given at the end of Sec. IV.4.
We assume n is even and greater than 0, so n = 2*k for some k and n/2 = k, and
we massage P:

P

= <n = 2*k>

f(N) = a*f(2*k) + b*f(2*k + 1)

= <Definition of f>
f(N) = a*f(k) + b*(f(k) + f(k+1))

= <Rearrange>
f(N) = (a+b)*f(k) + b*f(k+1)

This formula has the form [n,a,b \ n/2,a+b,b]P, so we can take E to be a+b
and F to be b. Hence, the assignment is n,a,b= n/2,a+b,b;. The assignment to
b is not needed. In the same way, we develop the multiple assignment for the
else-part and end up with this program:

n= N; a= 1; b= 0;

{invariant P: f(N) = a*f(n) + b*f(n+1)}
while (n != 0) {

if (n is even) n, a= n/2, a+b;

else n, b= n/2, a+b;

}

As Edsger W. Dijkstra, who first developed this algorithm in this fashion in
the 1970s and called it fusc, would have said, “Ain’t it a beaut?”.

Appendix IV.6 A neat example 523

Index

! 20, 227
!= 21, 23, 218, 223, 227
% 19, 23, 217, 223
& 228
&& 21, 23, 227
[h] 178, 185
[h..k] 178, 185
* 16, 19, 23, 217, 222
*/ 27
+ 16, 19, 23, 216, 222
– 16, 19, 23, 216, 222
.. 178, 185, 236
/ 16, 19, 23, 217, 222
/* 27
// 27
\ (backslash) 175, 225
\" (double-quote char) 175, 225
\' (single-quote char) 175, 225
\\ (backslash char) 22, 175, 225
\b (backspace char) 175, 225
\f (form-feed char) 175, 225
\n (new-line char) 175, 225
\r (carriage-return char) 175, 225
\t (tab char) 175, 225
|| 21, 23, 227
| 228
< 21, 23, 218, 223
<= 21, 23, 218, 223
= 27
== 21, 23, 218, 223, 227

for object names 37
=> 508
> 21, 23, 218, 223
>= 21, 23, 218, 223

A

abs. See Math.abs
absolute path 211
abstract class 163

vs. interface 335
abstract method 164
abstract method declaration 336
abstract window toolkit 333
abstraction 263

levels of 263, 295
access modifier 45, 108, 155

package 155
private 108, 155
protected 155

public 108, 155
action listener 464
ActionListener 464
active frame 96, 134, 162
activity 4
addition 16, 217, 222
Algol 60 10
algorithms

binary search 291, 432
bubblesort 299
exponentiation 245, 412
factorial 407
Fibonacci numbers 413, 431
finding a minimum 289
gcd 267, 432
inserting a value 288
insertionsort 288
linear search 288
magic square 312
mergesort 414
merging sorted segments 288
partition 421
partitioning an array 288
Pascal's triangle 310
permutation generation 427
polynomial evaluation 298
quicksort 420
quotient calculation 267
remainder calculation 267
roach explosion 244
row-major search 306
saddleback search 307
selectionsort 293
string reversal 432
testing primality 251
tiling Elaine's kitchen 411
transposing an array 312

aliasing 118, 274
and. See conjunction
anglicizing integers 87
anonymous class 360

when to use 360
aphorism 387
API 14, 32

Java API specs 493
apparent class 150
apparent type 149
append 406

applet 13, 438
applet tag 443
security of 444

applet computation 438
application 435

stand-alone 436, 490
Application Programming Interface.

See API
argument 23, 26, 35, 59, 62

array as an argument 275
placing on call stack 96

arithmetic relation 21
array 271

as an argument 275
as an object 274
base type of 272, 302
changing the size of 287
checking equality of two 283
creating an array 272
declaration of 272
element of 271
horizontal description of 277
length of 273
of arrays 307
ragged 308
range of 272
rectangular 301
returning an array 284
two-dimensional 301

array initializer 273, 303
array segment 276

processing 279
array type 311
ArrayList 185
ascending order 293
ASCII 225
assembly language 9
assert statement 395
assertion 75, 506

indenting 374
assignment statement 27, 28
assignment statement axiom 510
associativity 218

left 218
right 218

at least 21
at most 21
awt 333

526 Index

axiom 505, 509

B

backslash 22, 175
backslash char 175, 225
backspace char 175, 225
Backus, John 9
bang 227
BankAccount 350
base case 405, 408, 427
base of a number system 499
base type 272, 302
base-2 logarithm 504
Bauer, F.L. 11
behavior of a class 109
binary number system 6, 499

conversion from binary to int 503
conversion from int to binary 502
vs. octal, hexadecimal 501

binary search 291, 432
bit 6, 7
bit operators 228
blackbox testing 392
block 69
body

of a constructor 147
of a function 75
of a method 43, 64
of a procedure 64

Boole, George 20, 226
boolean 20, 226
Boolean 174
boolean tyro 229
BorderLayout 448, 458
bound function 260, 514
Box 458, 460

uses BoxLayout manager 458
BoxLayout 460
break statement 258
bubblesort 299
buffer 202
BufferedReader 202
bug 385
Button 450

listening to 463
Button events 463
ButtonGroup 454
byte 7, 218
Byte 174

C

C 8, 13, 14
C++ 8, 13, 14
cache 5
calculating an expression 516
calculating an if-condition 516
calculating part of a repetend 521
call

argument of 59
of a constructor 38, 112, 116, 147
of a function 62
of a procedure 59
of an overridden method 144
stepping into 67, 68
stepping over 67, 68

call stack 94, 134, 314
placing arguments on 96
placing return value on 96
trace of 314, 491

capacity, of a Vector 184
CardLayout 458
carriage-return char 175, 225
cast 19, 20, 148, 220

among integral types 220
double to int 19
identity 221
int to double 19
narrowing 20, 151, 226
precedence of 221
widening 20, 151, 226

catch-block 320
catch-clause 320

parameter of 319
catching a thrown object 322
catenation 22, 176
ceil 24
central processing unit 4, 5
char 224
Character 174
checked Exception 323, 325

how to deal with 325
choose 310
class 39

abstract 164
anonymous 360
behavior of 109
folder of 107
inner class 350

instance of 31, 107, 116
local inner class 358
naming conventions for 372
nested 348
object of 31, 107, 116
static nested 348
subclass of 142
superclass of 142
superest class 154
testing a class 391

class as a type 39, 115
class component. See static compo-

nent
class definition 107
class hierarchy 153
class invariant 45, 146, 382
class method. See static method
class path 332
class type 37, 115, 215
class variable. See static variable
classes

Applet 438
ArrayList 185
BankAccount 350
Boolean 174
BorderLayout 448
Box 458, 460
BoxLayout 460
BufferedReader 202
Button 450
ButtonGroup 454
Byte 174
CardLayout 458
Character 174
Color 49
Coordinates 306
Date 40, 189
DecimalFormat 191
Double 174
Error 315, 325
Exception 315, 318
Float 174
FLowLayout 459
Graphics 49
GridBagLayout 458
GridLayout 458
InputStreamReader 202
Integer 172

Index 527

JApplet 438
JButton 450
JCheckBox 454
JColorChooser 454
JComboBox 454
JComponent 449
JDialog 474
JFileChooser 205, 207
JFrame 33, 446
JLabel 450
JList 454
JLiveRead 196
JLiveWindow 199
JOptionPane 471
JPanel 455
JRadioButton 454
JScrollPane 452
JSlider 454
JTextArea 452
JTextField 450
Line 348
Locale 192
Long 174
Math 23, 48
MouseDemo 468
MouseEvents 468
MouseInputAdapter 468
MyJLiveWindow 199
NumberFormat 192
Object 154
OverlayLayout 458
PermutationGenerator 427
Pixel 342
Point 41
PrintStream 207
Random 194
RuntimeException 318
Short 174
String 175
StringBuffer 181
StringEnumeration 345
SwingConstants 450
Throwable 316, 317
Transaction 351
URL 212
Vector 184
WireForm 348

classes and objects 30

CLASSPATH 332
close button 447
COBOL 10
Color 49
column of an array 302

length of 302
column-major order 306
combinatorics 309
command-line window 436
comment 27

Javadoc comment 378
Comparable 341
Comparator 343
compiler 9
component 39, 82

field 107
inherited 143
method 107
non-static 82
referencing 118
static 47, 82, 122

component (of a GUI) 448
as a container 456
Box 458, 460
Button 450
heavyweight 457
hierarchy of subclasses 456
JButton 450
JCheckBox 454
JColorChooser 454
JComboBox 454
JLabel 450
JList 454
JPanel 455
JRadioButton 454
JScrollPane 452
JSlider 454
JTextArea 452
JTextField 450
lightweight 457
listening to 464, 469
maximum 451
minimum size 451
preferred size 451
size of 451
within a component 456

computer organization 4
concatenation. See catenation

conclusion 509
condition 69

of a for-loop 254
of a while-loop 234
of an if-statement 69

conditional statement 68
conjunct 21, 227
conjunction 21, 227
constant 122

naming conventions for 371
reason for static 123

constructor 38, 39, 110, 111
calling one from another 112
declaration of 110, 147
default constructor 111
in a subclass 147
indentation for 375
purpose of 111
specification for 377

constructor call 38, 112, 147
constructor invocation. See construc-

tor call
Container 456
content pane 446
continue statement 258
conversion of value. See cast
Conway, Richard 12
CPU 4, 5

D

Dahl, Ole-Johan 13
Date 40, 189
debugger 398
debugging 385, 398
decimal number system 6, 499
DecimalFormat 191
declaration

initializing 29
of a class variable 122
of a constructor 110, 147
of a field 107
of a function 58
of a local variable 76
of a method 57
of a parameter 57, 320
of a procedure 58
of a static variable 122
of a variable 28
of an array 272

528 Index

default constructor 111
default package 156, 330
default value 107
defining variables 369
definition

of a class 107
of a subclass 142

Definitions pane 483
deprecated 40, 189, 495
depth of recursion 415
descending order 293
design

object-oriented 124
stepwise refinement 83
top-down programming 83

dialog window 470
JDialog 474
showConfirmDialog 473
showInputDialog 472
showMessageDialog 471
showOptionDialog 473

Dijkstra, E.W. 523
Dijkstra, Edsger W. 11
discriminant 327
disjunct 21, 227
disjunction 21, 227
division 18, 19, 217, 222
DNA 267
domain name 210
DOS window 436
double 18, 221

MAX_VALUE 19
MIN_VALUE 19

Double 174
double helix 267
double-quote 225
double-quote char 22, 175
DreamWeaver 444
DrJava 482

Definitions pane 483
Interactions history 485
Interactions pane 483
Javadoc 486
JUnit 486

dump 7

E

Eiffel 13
else-part 69

empty range 276
Empty-statement axiom 510
enumeration 344
Enumeration 344
equality 22, 118, 227

of two arrays 283
equals 154
equivalence 227
equivalence relation 154
error

off-by-one 260
overflow 17
roundoff 19

error message 491
Error 315, 325

output of 313
escape character 22, 175, 225
escape sequence 175, 225
ethernet 4
Exception 318

catching a thrown 319
checked 323, 325
unchecked 325

exhaustive testing 392
exponent 19
exponentiation algorithms 245, 412
expression 16

cast 19, 150
function call 23, 58
new-expression 33, 116
with variables 28
without side effects 511

extending an interface 340
extends clause 43, 142, 340

F

factorial 407
false 20, 226
Fibonacci numbers 268
Fibonacci sequence 413, 431
field 31, 45, 107

declaration of 45
indentation for 375
naming conventions for 371
public, reason for 119
referencing 117

file
appending to 208
obtaining from user 205

reading from 205
writing to 207

file drawer 30
file protocol 210
final 122, 358
finally-block 320
flattened view of inner class 356
float 224
Float 174
floor 24
floppy disk 4
flow chart 234
FlowLayout 458, 459
Floyd, Robert 12
folder 30, 31

for a class 107
for a subclass 44, 142

for-loop 78, 253
break statement in 258
condition of 254
continue statement in 258
development of 255
indentation for 374
initialization of 254
invariant of 254
making progress 254, 255
nested 261
processing range of integers 78
repetend of 255
termination of 255

form-feed char 225
formating numbers 190
Fortran 8, 9, 14
fractal 433
frame for a method call 93, 134

active 96, 134, 162
inactive 96

fresh variable 240
Front Page 444
ftp protocol 210
function 23, 31, 39

equals 154
indentation for 375
naming conventions for 372
return statement for 46
specification of 377
toString 112

function body 75

Index 529

function call 23, 35, 62
argument of 26
execution of 76
tail recursive 417, 419

function declaration 58
function invocation. See function call
function name 23

overloaded 23
function return statement 74, 75
functional approach 89
functional language 417
functional testing 392

G

gcd 267, 432
getter method 35, 45, 109
gigabyte 7
goal-oriented programming 516
google 212
googol 222
Gosling, James 13
goto statement 11
Graphical User-Interface. See GUI
Graphics 49, 455
greater than 21
greatest common divisor 267, 432
GridBagLayout 458
GridLayout 458
Gries, David 12, 506
GUI 445

listening to 462
GUI JLiveWindow 199

H

hard drive 4
Haskell 417
heavyweight component 457
hexadecimal number system 7, 499

vs. binary, octal 501
Hoare triple 506
Hoare, C.A.R. 12, 506
Horner’s scheme 503
host (domain name) 210
How does it fix the loop invariant?

239
How does it make progress? 239
How does it start? 239
html 438, 441

tag 441

http protocol 209
hundreds position 500
Hypertext Markup Language 438

I

I/O 14, 196, 201
I/O error 202

IBM 9
identifier 26
identity cast 221
if-else statement 69, 70

indentation for 373
if-else-rule 513
if-rule 513
if-statement 69
immutable 172, 258
implementing an interface 336
implements clause 336
implication operator 508
import statement 32, 108, 330
inactive frame 96
increment 80
indentation conventions

assertion 374
class variable 375
component of a class 375
field 375
for-loop 374
general conventions 373
if-else statement 374
instance method 375
instance variable 375
loop invariant 374
method body 375
static variable 375
while-loop 374

index 178, 185, 272
inequality 22, 227
inequivalence 227
inference rule 505, 509
Infinity 19
information hiding 108, 383
inheritance 143

multiple inheritance 161
initial value

default value of 107
of a field 107
of a local variable 76

initialization

of a for-loop 254
of a while-loop 239

initializer 273, 303
inner class 350

file drawer for 355
flattened view of 356
local 358
when to use 353

input stream 201
input/output 201
InputStreamReader 202
insertion sort 293
inside-out rule 83, 109

for non-static method 110
for static nested classes 349

instance 31, 116
instance method 31, 107

calling 117
instance variable. See field

describing 382
indentation for 375
naming conventions for 371

instance-function call 35
instance-procedure call 35
instanceof 150, 152
int 17, 216

division 18
MAX_VALUE 17, 173
MIN_VALUE 17, 173

integer 17
Integer 172
integral type 225
Interactions history 485
Interactions pane 483

importing classes into 485
interface 335

as a type 337
casting to and from 338
dealing carefully with 400
implementing 336
vs. abstract class 335

interfaces
ActionListener 464
Comparable 341
Comparator 343
Enumeration 344
Iterator 347

International Standards Organization.

530 Index

See ISO
internet 4
invariant 238

class invariant 45, 146
developing 517
of a loop 238, 239, 513
techniques for creating 517

invocation. See call
is-a relation 156
ISO 192

ISO-3166 (country code) 192
ISO-639 (language code) 192

iteration 234
Iterator 347

as an inner class 354

J

JApplet 438
jar file 436, 443, 490

manifest in 490
Java 8, 13
Java API specs 493

description of 495
url of 493

java application 435
Java ARchive. See jar file
Java console 484

reading from 196
Java Foundation Classes. See Swing
Java path 331

suffix of 331
Java SDK 482
Java Virtual Machine 13, 482
java.applet 333
java.awt 333, 445
java.io 333
java.lang 333
java.tex 334
java.util 334
javac 437, 489
Javadoc 378, 437, 486, 490, 496

extracting comments 486, 496
Javadoc comment 378, 496
javanize 406
javax.swing 445
JButton 450

differentiating among 466
listening to 463

JCheckBox 454

JColorChooser 454
JComboBox 454
JCrollPane 452
JDialog 474
JFileChooser 205, 207
JFrame 33, 446

border of 446
close button 447
content pane 446
graphics in 48
preventing resizing 447
use BorderLayout 458
using a subclass of 447

JLabel 450
JList 454
JLiveRead 196
JLiveWindow 199
JOptionPane 471

showConfirmDialog 473
showInputDialog 472
showMessageDialog 471
showOptionDialog 473

Joy of Cooking 56
JPanel 455

doing graphics in 455
setting its preferred size 455
uses FlowLayout manager 458

JRadioButton 454
JSlider 454
JTextArea 452
JTextField 450

making uneditable 451
JUnit 390, 486
JVM 13, 482

K

Kay, Alan 13
keyboard, reading from 196, 202
Koch snowflake 433

L

last-in-first-out 95
layout manager 448

BorderLayout 448, 458
BoxLayout 458
CardLayout 458
changing 462
FlowLayout 458, 459
GridBagLayout 458

GridLayout 458
JComponent 449
manager 460
OverlayLayout 458

left associative 218
length of a column 302
length of a row 302
length of an array 273
lesson page 4
levels of abstraction 263, 295
LIFO 95
lightweight component 457
Line 348
linear search 288
Linux 14
Lisp 10, 417
listener

for a button 464
for a mouse event 468
for other components 469
having several 470

literal 16, 175
boolean 226
byte 219
char 224
double 221
float 224
hexadecimal 216
int 216
integer 17
long 220
octal 216
short 219
String 22

livetext 4
local inner class 358

rules for 359
when to use 358

local variable 76
describing 383
naming conventions for 371
placement of declarations 383
scope of 76

Locale 192
logarithm 504

natural logarithm 268
long 219
Long 174

Index 531

loop. See while-loop and for-loop
bound function for 514
termination of 514

loop condition 234, 254
loop counter 254

scope of 254, 255
loop invariant 238, 513

indentation for 374
loop patterns 248
loopy questions 237, 517

M

machine language 8
Macintosh 8, 14, 175, 331
Macromedia 444
magic square 312
mailto protocol 210
main 435
maintenance 50
manifest 436, 490
manila folder. See folder
mantissa 19
Math 23
Math.abs 24
Math.ceil 24
Math.floor 24
Math.max 24
Math.min 24
Math.PI 48, 122
Math.random 194
Math.sin 24
Math.sqrt 24
matrix 301
max 24
maxim 387
maximum size 451
MAX_VALUE 17, 173, 216, 219, 222
McCarthy, John 10
MDOS 489
megabyte 7
memory 4, 6

RAM 6
random access 6
read only 6
ROM 6

memory location 7
mergesort 414
method 31, 55. See also constructor,

function, procedure

abstract 164
constructor 110, 111
getter method 35, 45, 109
guidelines for writing 376
indentation for 375
inherited 143
instance method 107
method body 64
method main 435
non-static. See instance method
overriding 143
reason for private 109
reason for static 124
setter method 35, 45, 109
signature 57
specification for 376
static 82
versus recipe 55

method body 43
method call

executing 97
frame for 93

method declaration 57
method header 57
method invocation. See method call
Microsoft 13, 444
Milner, Robin 58
min 24
minimum size 451
minimum value, finding 289
MIN_VALUE 17, 173, 216, 219, 222
ML 8, 58, 417
mod 217
modal window 472
model of execution 93, 134, 162
modulo 217

vs. remainder 217
mouse event 466

listening to 468
registering for 468

MouseDemo 468
MouseEvents 468
MouseInputAdaptor 468
multi-line comment 27
multiple assignment 511
multiple inheritance 161

of interfaces 339
multiple-assignment axiom 511

multiplication 16, 19, 217, 222
mutable 181, 258
MyJLiveWindow 199

N

naming conventions 370
NaN 222
narrower type 20, 151, 220, 226
narrowing cast 20
National Institute of Standards and

Technology 386
native program 457
natural logarithm 268
negation 16, 19, 20, 216, 222, 227
NEGATIVE_INFINITY 222
nested class 348
nested loop 261
Netscape Communicator 13, 444
new-expression 33, 39, 116

for an array 272
new-line char 175, 225
NIST 386
non-static 82
non-static variable. See instance vari-

able
nondeterminism 421
not 20, 227
not a number 222
null 38
null pointer 315
NullPointerException 315
number system 6, 499

binary 6, 499
decimal 6, 499
hexadecimal 7, 499
octal 7, 499

NumberFormat 192
numbers, formating 190
numbers, random 193
Nygaard, Kristen 13

O

Oak 13
object 31, 116, 154

throwable 317
object recursion 427

base case of 427
recursive case 427

object-oriented approach 12

532 Index

object-oriented design 124, 156
example of 158

octal number system 7, 216, 499
vs. binary, hexadecimal 501

off-by-one error 260
open source software 482
operator

overloaded 22
precedence of 23
relational 21

or. See disjunction
origin, of a window 41
output of thrown exceptions 313
output stream 201
overflow 17
OverlayLayout 458
overloaded method name 23
overloaded operator 22
override 48
overriding a method 143
overriding rule 144

P

package 31, 155, 329
default 156, 330
java.applet 333
java.awt 333, 445
java.io 333
java.lang 333
java.text 334
java.util 334
javax.swing 445

package name 331
package-reference rule 330
paint 49
palindrome 432
paper tape 3
parallel arrays 295
parallelogram 159

leaning factor 159
parameter 56, 57, 319

describing 383
naming conventions for 371
of a catch-clause 320
scope of 65

parameter declaration 57, 320
parameterized recipe 56
parent window 471
partition 421

pivot value 421
Pascal’s triangle 309
Pascal, Blaise 309
path 211, 437

absolute 211
relative 211
setting the path 489

pattern 191
recursive pattern 408

PC 14
peripheral unit 4
PermutationGenerator 427
pi 269

calculating approximations to 269
pivot value 421
pixel 49
Pixel 342
Poe, Edgar Allen 86
pointer

null pointer 315
polymorphism 58, 149

ad hoc 58, 149
object-oriented 149
parametric 58

polynomial evaluation 298
port 210
positional notation 500
POSITIVE_INFINITY 222
postcondition 93, 506
precedences 16, 23

of all operations 227
precondition 93, 506
preferred size 451
premise 509
prepend 406
prime 251
primitive type 37, 215
principle

of information hiding 108
subclass principle 157

print 64
println 64
PrintStream 207
private 45, 108, 155

method, reason for 109
problem domain 124
procedural approach 89
procedure 31, 39

indentation for 375
naming conventions for 372
specification for 377

procedure body 64
procedure call 35, 59

execution of 66
tail recursive 416, 418

procedure definition 58
procedure invocation. See procedure

call
procedure return statement 74
program 3, 8
program counter 94
ProgramLive 4
programmer 8
programming language 13

functional 10, 417
html 438, 441
HyperText Markup Language 438
NATO 11
procedural 9
object-oriented 12, 14
portability 14
safe 14

programming style 50, 367
goal-oriented 516
guidelines 368
reason for 367

progress 239, 255, 257, 260
promote 220
propagation of a thrown exception 321
protected 155
protocol 209
pseudocode 84
public 43, 108, 155
public method overriding rule 144
punch cards 3
Python 8

Q

quadratic algorithm 293
quadratic formula 327
quicksort 420

at its best 422
at its worst 424
depth of recursion of 424
space requirement 424

quotient 217, 267

Index 533

R

ragged array 308
RAM 6
Random 194
random numbers 193
random-access memory 6
range of an array 272, 303
ranges h..k 236, 276

empty range 276
Raven, The 86
read-only memory 6
readLineBoolean 197
readLineDouble 197
readLineInt 196
readLineLong 197
readLineNonwhiteChar 197
readLineString 197
readString 197
real class 150
real type 149
Recorde, Robert 27
rectangular array 301

column-major order 306
printing 304
row-major order 306
schema for processing 305
transpose of 312

recurrence relation 268
recursion 403

base case 405, 408
depth of 415
mathematical definition 407
object recursion 427
recursion strategy 408
recursive case 405, 408
recursive pattern 408
tail recursion 416, 417

recursion strategy 408
recursive call 404

execution of 415
tail recursive 416, 417, 418

recursive case 405, 408, 427
recursive definition 403
recursive pattern 405, 408
referencing an array element 302
register 5, 8
relation 90

arithmetic relation 21

equivalence relation 154
reflexive relation 154
simplifying 91
symmetric relation 154
transitive relation 154

relative path 211
remainder 16, 19, 217, 223, 267

versus modulo 217
repetend 79, 80, 234, 254, 255

developing 521
repetitive statement. See while-loop

and for-loop
return statement 46, 74
return type 45
return value 75, 96

placing on call stack 96
returning an array 284
reversing a string 259
RGB (Red-Green-Blue) 50
rhombus 160
Rice University 482
right associative 218
roach explosion 244
ROM 6
Rombauer and Becker 56
roundoff error 19
row of an array 302

length of 302
row-major order 306
row-major search 306
RuntimeException 318, 325

S

saddleback search 307
schema 248

to process a range 248
to process an array segment 280
to process in reverse 280
to process two-dimensional array

305
Scheme 8, 417
scientific notation 18, 222
scope

of a local variable 76
of a loop counter 254, 255
of a parameter 65
of a variable 65

scope box 94
scroll bars 452

SDK 482
security, with applets 444
seed 193
segment of an array 276, 303
selection sort 293
separation of concerns 263, 305, 470
sequencing rule 512
setter method 35, 45, 109
shadowing 144
short 218
Short 174
short-circuit evaluation 227
showConfirmDialog 473
showInputDialog 472
showMessageDialog 471
showOptionDialog 473
side effect 511
signature 57
Simula 67 12
Simula I 12
sin 24
single-line comment 27
single-quote char 175, 225
Sirotta, Milton 222
size, of a Vector 184
skip axiom 510
Smalltalk 13
software 8
software crisis 10
Software Development Kit 482
software engineering 11
software quality teams 386
Solaris 14
sorted 293
sorting

bubbleSort 299
insertionSort 293
mergeSort 414
quickSort 420
selectionSort 293

source progam 8
specification 32, 57

as a contract 376
form of 377
nondeterministic 421
of a constructor 377
of a function 377
of a method 57, 376

534 Index

of a procedure 377
specification, of a program segment

507
Specifying a program segment 368
spiral 248
sqrt 24
square 160

magic square 312
stack 95
stand-alone application 490
standard input 202
statement

assignment 27
initializing declaration 29

statement-comment 84, 263, 379
indentation for 380

static 47, 82
static component 47, 122
static method 82, 124
static nested class 348

inside-out rule for 349
when to use 349

static variable 122
describing 382
indentation for 375
naming conventions for 371

stepping into a call 67, 68
stepping over a call 67, 68
stepwise refinement 11, 83, 305
Strachey, Christopher 58
stream 201
strengthen precondition rule 509
String 22, 175

length of 177
literal 22, 175
reversing 259
substring of 179

string reversal 432
StringBuffer 181

Java’s use of 182
length of 182
substring of 182

StringEnumeration 345
Stroustrup, Bjarne 13
structural testing 393
structured programming 11
subclass 41, 142
subclass definition 41

subclass principle 157
subinterface 340
subroutine 12
subscript 271
subscripted variable 271

index of 272
substring 179
subtraction 16, 19, 217, 222
Sun Microsystems 13, 70
super 145, 148
superclass 142
superclass constructor 148

calling 148
superest 154
superinterface 340
Swing 445
SwingConstants 450
switch statement 258
symmetric relation 154
System.out.print 64
System.out.println 64

T

tab char 175, 225
tag 441

applet tag 443
tail recursion 416, 417

eliminating 418, 419
TapeARchive. See tar file
tar file 436, 490
tens position 500
termination of a loop 514
test 385
test case 385

developing 392
maxims for generating 387

test coverage 394
test driver 389
testing 385

blackbox testing 393
exhaustive testing 392
functional 393
structural testing 393
using DrJava’s Interactions pane

394
using JLiveWindow 395
whitebox testing 393

testing a class 391
text area 452

text wrapping 453
text field 450

making uneditable 451
then-part 69

always a block 373
this 109

need for 110
throw-statement 316
Throwable 316, 317
throwable object 317

classification of 318
thrown exception

output of 314
propagation of 321

throws-clause 322, 324
Tiling Elaine’s kitchen 411
timing diagram 234
tools.jar 482
top-down design 86
top-down programming 11, 83
toString 112
Transaction 351
transitive relation 154
transpose 312
tree 154

root of 154
true 20, 226
truth table 227
try-block 320
try-statement 319, 320
two-dimensional array 301

column-major order 306
row-major order 306
schema for processing 305

type 17, 215
apparent 149
boolean 20, 226
byte 218
char 224
class type 37, 115
double 18, 221
float 224
int 17, 216
integer 17
interface type 339
int[][] 302
long 219
narrower 20, 220, 226

Index 535

primitive 37, 215
real 149
short 218
String 22
wider 20, 220, 226

tyro 229

U

unary + 16, 19, 216
unary - 16, 19, 216
unchecked Exception 325
unicode 225
units position 500
Unix 175, 331, 333, 436

terminal window 489
url 209

absolute 211
reading from 212
relative 211

URL 212

V

variable 26
defining 369
describing 381
field 107
fresh 240
instance variable 107
local variable 76
naming conventions for 370
of an interface type 339
parameter 57
shadowed 144
static 82, 122
subscripted 271
variable path 437

variable declaration 28
Vector 184

capacity of 184
size of 184

virtual machine 13
void 43
von Koch, Helge 433

W

weaken postcondition rule 509
When does it stop? 239
while-loop 233

bound function of 260

break statement in 258
condition of 234
indentation for 374
initialization of 239
invariant of 238
iteration of 234
maintaining the invariant 239
making progress 239
nested 261
repetend of 234
termination of 239
tracing execution of 234

while-rule 514
whitebox testing 393
whitespace 441
widening cast 20
wider type 20, 151, 220, 226
window

modal 472
MSDOS 489
parent 472
UNIX terminal window 489

Windows 175, 331
Windows 2000 437
Windows 95 333
Windows NT 332
WireForm 348
Wirth, Niklaus 11
wrapper classes 172

X

Xerox PARC 13

536 Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

